Generative AI is about fifty years old. There are four main kinds of generative Ai (energy-based neural networks, variational inference, variational autoencoders, and transformers). There are three fundamental methods underlying all forms of generative AI: the reverse Kullback-Leibler divergence, Bayesian conditional probabilities, and statistical mechanics. Transformer-based methods add in multi-head attention and positional encoding. Generative AI is not, and never can be, artificial general intelligence, or AGI. AGI requires bringing in more architectural components, such as ontologies (e.g., knowledge graphs), and a linking mechanism. Themesis has developed this linking mechanism, CORTECONs(R), for COntent-Retentive, TEmporally-CONnected neural networks. CORTECONs(R) will enable near-term AGI development. Preliminary CORTECON work, based on the cluster variation method in statistical mechanics, includes theory, architecture, code, and worked examples, all available for public access. Community participation is encouraged.
Category: Natural Language Processing
Evolution of NLP Algorithms through Latent Variables: Future of AI (Part 3 of 3)
AJM Note: ALTHOUGH NEARLY COMPLETE, references and discussion still being added to this blogpost. This note will be removed once the blogpost is completed – anticipated over the Memorial Day weekend, 2023. Note updated 12:30 AM, Hawai’i Time, Tuesday, May 29, 2023. This blogpost accompanies a YouTube vid on the same topic of the Evolution… Continue reading Evolution of NLP Algorithms through Latent Variables: Future of AI (Part 3 of 3)