The most important thing in building an AGI is the ability to repeated bring the latent layer to equilibrium. This is the fundamental capability that has been missing in previous neural networks. The lack of a dynamic process to continuously reach a free energy minimum is why we have not had, until now, a robust… Continue reading CORTECONs and AGI: Reaching Latent Layer Equilibrium
Category: Latent Variables
CORTECONS: A New Class of Neural Networks
In the classic science fiction novel, Do Androids Dream of Electric Sheep?, author Philip K. Dick gives us a futuristic plotline that would – even today – be more exciting and thought-provoking than many of the newly-released “AI/robot as monster” movies. The key question today is: Can androids dream? This is not as far-fetched as… Continue reading CORTECONS: A New Class of Neural Networks
1D CVM Object Instance Attributes: wLeft Details
We illustrate how the specific values for a single object-oriented instance attribute are determined. We do this for the specific case of the “wLeft” instance attribute for the Node object in the 1-D cluster variation method (1D CVM) code. The same considerations will apply when we progress to the 2D CVM code. The specific values… Continue reading 1D CVM Object Instance Attributes: wLeft Details
Evolution of NLP Algorithms through Latent Variables: Future of AI (Part 3 of 3)
AJM Note: ALTHOUGH NEARLY COMPLETE, references and discussion still being added to this blogpost. This note will be removed once the blogpost is completed – anticipated over the Memorial Day weekend, 2023. Note updated 12:30 AM, Hawai’i Time, Tuesday, May 29, 2023. This blogpost accompanies a YouTube vid on the same topic of the Evolution… Continue reading Evolution of NLP Algorithms through Latent Variables: Future of AI (Part 3 of 3)
New Neural Network Class: Framework: The Future of AI (Part 2 of 3)
We want to identify how and where the next “big breakthrough” will occur in AI. We use three tools or approaches to identify where this next big breakthrough will occur: The Quick Overview Get the quick overview with this YouTube #short: The Full YouTube Maren, Alianna J. 2023. “A New Neural Network Class: Creating the… Continue reading New Neural Network Class: Framework: The Future of AI (Part 2 of 3)
Kuhnian Normal and Breakthrough Moments: The Future of AI (Part 1 of 3)
Over the past fifty years, there have only been a few Kuhnian “paradigm shift” moments in neural networks. We’re ready for something new!
Variational Free Energy: Getting-Started Guide and Resource Compendium
Many of you who have followed the evolution of this variational inference discussion (over the past ten blogposts), may be wondering where to start. This would be particularly true for readers who are not necessarily familiar with the variational-anything literature, and would like to begin with the easiest, most intuitive-explanatory articles possible, and then gently… Continue reading Variational Free Energy: Getting-Started Guide and Resource Compendium
Variational Free Energy and Active Inference: Pt 5
The End of This Story This blogpost brings us to the end of a five-part series on variational free energy and active inference. Essentially, we’ve focused only on that first part – on variational free energy. Specifically, we’ve been after Karl Friston’s Eqn. 2.7 in his 2013 paper, “Life as We Know It,” and similarly… Continue reading Variational Free Energy and Active Inference: Pt 5
Variational Free Energy and Active Inference: Pt 4
Today, we interpret the q(Psi | r) and p(Psi, s, a, r | m) in Friston’s (2013) “Life as We Know It” (Eqn. 2.7) and Friston et al. (2015) “Knowing One’s Place” (Eqn. 3.2). This discussion moves forward from where we left off in the previous post, identifying how Friston’s notation builds on Beal’s (2003)… Continue reading Variational Free Energy and Active Inference: Pt 4
Variational Free Energy and Active Inference: Pt 3
When we left off in our last post, we’d determined that Friston (2013) and Friston et al. (2015) reversed the typical P and Q notation that was commonly used for the Kullback-Leibler divergence. Just as a refresher, we’re posting those last two images again. The following Figure 1 was originally Figure 5 in last week’s… Continue reading Variational Free Energy and Active Inference: Pt 3