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1.1 Introduction and Overview

Generative artificial intelligence (AI) methods, along with variational meth-
ods and other machine learning methods, both lie at the confluence of
statistical mechanics, probability theory, and neural networks, as shown in
Figure 1.1.

Probability &
Information Theory

Statistical Mechanics

* g Prioriand a Posteriori
Probabilities

* Mutual Information
Relative Entropy

* Partition Function J
+ Entropy & Enthalpy (Energy)
*Free Energy ) n
* Ising Model & Mean Field

Extension, ... Maqhine Learning
* Phase Transitions .5 g s ¢

» Kullback-Leibler Divergence
» Expectation Maximization
+Variational Methods ...

.- Neural Networks

* Hopfield Neural Network
* Boltzmann Machine

* Other Energy-Based Models
* Gradient Descent Learning

* Contrastive Divergence ...
* Bayesian Belief Networks

Figure 1.1: The gold zone: essential generative Al methods as well as
machine learning algorithms draw from statistical mechanics, probability
and information theory, and as well as neural networks fundamentals.

The Seven Key Equations

This short Précis covers seven of the most important equations in
artificial intelligence and machine learning, as shown in Figure 1.2.
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Figure 1.2: Seven key equations in artificial intelligence and machine learning
include four from statistical mechanics, one from Bayesian-based probability
theory, and two that are central to machine learning itself.




Four of these equations come from statistical mechanics, and one comes
from Bayesian probability theory. The sixth equation, the Kullback-Leibler
divergence, is essential to both energy-based neural networks as well as to
variational methods. The final (seventh) equation identifies how variational
methods seek to minimize the Kullback-Leibler (K-L) divergence in order to
find a most suitable model for a given set of data.

This Précis will not attempt to derive any of them; the purpose is more
to name them, and to let you read them (in plain English), and understand
what they mean. The derivations, and how to work with and use these
equations, will be in the forthcoming book, Statistical Mechanics, Neural
Networks, and Artificial Intelligence.

1.2 Statistical Mechanics Equations

The fundamental notion of statistical mechanics is that a system is composed
of many distinct units, and each i*" unit has a specific energy, e;. We can
determine probabilities for a system; not so much of whether or not an
individual unit will have a specific energy, but rather, of whether the whole
system will be in a certain state (a microstate) with an overall system energy.

The energy-based probability equation

In the statistical mechanics universe, the probability function deals with the
probability of finding the system in a certain microstate.

The key thing to notice in Eqn. 1.1 is the index j. Instead of referring
to the number of units in a system, or to the energy levels available in the
system, j refers to the microstate in which the system finds itself.

Because this is so important, we will shortly discuss microstates.

The (Statistical Mechanics)

Energy-based Probability:

pj= ZGXP(—ﬁEj)- (1.1)

The constant in this equation, 3, incorporates both a constant referred
to as Boltzmann’s constant and the temperature (in degrees Kelvin) of the
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system. In future work, will simplify this; either by setting 5 arbitrarily
to 1, or by using it as a parameter that we can modify. (That means, we
would let the notion of “temperature” modify the notion of “energy.” All
this, however, is for a later date.)

The partition function, Z (which we’ll discuss in the next subsection)
will be the normalizing factor in the probability equation. By including
it, we make sure that the sum of all the probabilities comes to one.

Reading the Probability Equation:

The probability that a system is in a given microstate
J is given as the exponent of the negative of beta
(a constant) times the energy of that state (that is,
the energy of the entire system in that microstate),
the whole divided by the partition function, Z.

As mentioned at the beginning of this subsection, the probability given
in Eqn. 1.1 is not just of any specific unit being in any given energy state.
Rather, it deals with the energy associated with the whole system being in
a given microstate, meaning that different units can be in different energy
states, and we need to sum up over all the units and their respective energies.

We see that the probability of finding units in energy state j decreases
as the energy E; increases, because the exponent of a negative number is
decreases with the size of that number. To visualize this, Figure 1.3 shows
the exponential equation for the negative of the variable .

You might notice that Eqn. 1.1 is non-obvious. It’s entirely reasonable
to ask a question such as, “where did this exponential term come in?”

To answer that, we’d have to go back further, to the degeneracy equation
for the system. We’d look at how we can describe not only the units in
the system, but how we can permute them (change their places with each
other). Because that is a separate discussion and derivation, I'll ask you to
take the previous equation on faith. We’ll get a partial answer in the next
subsection, on microstates, but a more complete answer will require more
derivations than we want in this (relatively short) Précis.
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Figure 1.3: The exponential equation for a negative value: y = exp(-x).

Microstates

Let’s envision a system that has three distinct energy levels, eg, e1, and e,
and that contains ten units, such as is shown in Figure 1.4. In this particular
illustration, there are seven units in the lowest energy state, ey, two units in
e1, and one unit in e,.

Note that the distribution of units shown in Figure 1.4 is realistic; the
likelihood that a unit is in a given energy level will governed by the value of
that energy level, so that the higher the energy, the fewer the units that are
in that energy level.

To express the distribution of units more precisely, there will be a greater
probability of having microstates with lower overall energies than microstates
with higher energies. The way in which a microstate has a lower overall
energy is that more units, respectively, are in the lower-energy states. For
example, in the three-state system just illustrated, more units are in state
eo, and fewer are in state e,.

We can compute the total energy F; associated with this microstate, as
is shown in Example 1.1.



1.2. STATISTICAL MECHANICS EQUATIONS 7

Microstatelllustration:
A System with Ten Units and Three Energy Levels

e,=2
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Figure 1.4: A single microstate for a system with ten units at three
energy levels; seven units where e = (), two units where e = 1, and one unit
at e = 2.

Example 1.1.
The energy for a given microstate, F;, is computed by summing the energy
for each unit in that microstate. For purposes of this example, let’s assume
that eg = 0, e; = 1, and e; = 2. For the microstate illustrated in Figure 1.4,
we obtain £, the total energy for that state, as:

e Seven units at ey = 0 gives an energy of 0 for that level,
e Two units at e; = 1, gives an energy of 1 for that level, and

e One unit at e; = 2, gives an energy of 2 for that level, so that
E,=T+«x0+4+2%x1=1%2=3.

Clearly, for any given microstate, we can compute the energy F; associ-
ated with that state.

The challenge is that, to compute the probability of a given microstate
occurring, we need to normalize the sum of all of our probabilities. That is,
for the statistical mechanics probability (as with all probability equations),
we have

Y pi=1
F

To accomplish this sum, we need to be able to identify all the microstates.
To do this, we need to understand exactly what a microstate s, and is not.



This then lets us do that summation over all microstates, and by doing so, we
obtain a normalizing function (1/Z) which we can then use in determining
the probability for any given microstate, as identified in Eqn. 1.1.

To do this, let’s take a closer look at the nature of microstates, as
illustrated in Figure 1.5.

Two configurations of units in a system are still
the same microstate if all that the units do is move
about on their (same) respective energy levels. If
any two (or more) units swap positions on energy
levels, or move to entirely different energy lev-
els, then we have a uniquely different microstate.

Figure 1.5 shows us three different configurations of units within the three-
energy-level system that we used earlier in Figure 1.4. Each illustration, (a)
- (¢), has the same number of units in the different energy levels. Illustration
(a) is identical with that given in Figure 1.4; we have simply labeled the
different units; 1..10.

In illustration (b), we swap two units that are at the same energy level.
This is like having two people, on the same floor in a building, change places
with each other. There is nothing substantially different when they do this;
this is not a different microstate.

In illustration (c), though, we swap two units from different energy levels.
This is like having two people exchange the floors that they are on in a
building. It ¢s a different microstate.

The Partition Function

Probably the most central equation for statistical mechanics, and thus for
machine learning, is the partition function. The partition function itself
is called Z, from the German word zusammanfiigen, literally “put together.”

The partition function tells us how a system is
put together in terms of distinct components.

As mentioned in the introduction to this Section, the fundamental notion
of statistical mechanics is that a system is composed of many distinct units,
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Determining What IS and IS NOT a Unique Microstate:
A System with Ten Units and Three Energy Levels
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Figure 1.5: Figuring out what IS and IS NOT a uniquely distinct microstate:
(a) - original illustration of a microstate, for a system with ten units at three
energy levels; (b) - units (6) and (7) change position within the same energy
level; this is NOT a uniquely different microstate from that shown in (a), so
does NOT get counted separately; (c¢) - units (7) and (8) change positions
between energy levels; this DOES count as a uniquely different microstate.
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and each unit has a specific energy, e;. That is, the 7*" unit has an energy,
e;, associated with it.

A couple of other ideas are very intrinsic to statistical mechanics. One
is that there are many, many units in a system; this allows us to make some
approximations during the course of our derivations. Another key notion is
that units with the same energy are indistinguishable from each other; we
say that they are degenerate with regard to each other. This is essential in
forming the statistical mechanics equations. We just saw the importance of
this in our discussion of microstates.

The partition function is given as

The Partition Function:

The sum here is over all the possible configurations, or microstates, that
the system can find itself in. This number gets very big, very fast.

Reading the Partition Function:

The partition function, Z, is the sum, over all the
different (j) microstates available, of the expo-
nent of the negative of a constant times the energy
of that microstate A microstate is a specific con-
figuration of units; that is, each unit in the sys-
tem inhabits one of the available energy states.

Example 1.2.
The accompanying slidedeck, Microstates and Partition Functions:
Some Simple Examples, gives two complete erxamples of how to
identify all of the microstates for two systems, each with very small set
of units and energy levels, and from there, how to compute the partition
function for each example.
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The entropy equation

The entropy equation is at the heart of several disciplines; statistical me-
chanics, information theory, and machine learning.

The (Statistical Mechanics)
Energy-based Probability:

In statistical mechanics, the entropy is represented as S, and in infor-
mation theory, as H. Usually, the authors will tell us what their variables
mean.

The entropy is always of the form given in Eqn. 1.3. Sometimes, though,
p; can get complex and interesting. For almost all the work that we will
do (until we encounter more advanced entropy formulas), p; will have the
definition that we gave earlier. Thus, the entropy term is summing over
microstates j, not the individual units themselves. As we get to more
advanced equations, our interpretation of this equation will deepen.

Reading the Entropy Equation:

The entropy of system is the negative of the
sum, over all the possible microstates j, of the
probability that units are in that microstate
j times the natural logarithm of the prob-
ability that units are in that microstate j.

Very often, we will have simplified systems that allow for only two
possible energy states. When this happens, we will say that the probability
of units (or fraction of the total units) being in one state is x, and then
(because the probabilities sum to one, and there are only two energy states),
the probability of units (or fraction of units) in the other state is 1 — z. In
this particular case, we will have

S =—[zrIn(z)+ (1 —2)In(1l — x)].
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In natural systems, the tendency is to find an equilibrium point which
minimizes the free energy, which we’ll discuss in the next subsection. One
aspect of this is maximizing entropy. You may have heard that the Second
Law of Thermodynamics is that the entropy of an isolated system must
increase over time. (By “isolated system,” we mean one into which we are
not putting any extra energy or materials, which makes this a theoretical,
not a practical, realization.)

To better envision how the energy for a two-state system appears, let us
first recall how a logarithmic curve looks, as shown in Figure 1.6.
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Figure 1.6: The logarithm of x, where x must be greater than zero; the
natural log of 1 is 0, and the natural log of all fractions is less than 0.

Recall that the logarithm of a fraction is always a negative number.
Further, in our entropy equation (Eqn. 1.4), both 2 and 1 — z are fractions;
each is < 1. Thus, our entropy expression is the negative of the sum of two
terms, and each of these terms is negative, so the overall entropy is positive.

In order to maximize the entropy, we want to maximize the distribution
of units among available energy states. Consider the case where we have
only two possible energy states, and suppose that our only concern is to
maximize the entropy. In this special case, we achieve maximal entropy
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when we have a symmetric system. We get this when we have a system
where the energies of the two states are equal.

The distribution of units between the two states is then equiprobable; there
are equal numbers of units in state A and state B. It is in this equiprobable
configuration that we have maximal entropy, or maximal distribution of
units among the available states (half in each state).

The entropy for this (ultra-simple) system is shown in Figure 1.7.

S=-[xIn(x)+ (1-x) In (1-x)]
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x = fraction of units in state A; O<x<1
1-x=fraction of units in state B.

Figure 1.7: The entropy for a system where there are only two states, A
and B, where the fraction of units in each state is given by z and 1 — x,
respectively. The entropy is maximal when z = (1 — z) = 0.5.

The important thing to realize here is: the negative sign in front of the
sum in the entropy term is what makes it convex, with a maximum in the
middle. If we want to maximize the entropy (and we do), then we need that
negative sign in front of the sum. This is what drives the system towards
the case where there are equal numbers of units in both states.
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If the reverse were true; if there was no negative sign in front of the sum,
then the shape of the curve in Figure 1.7 would be U-shaped rather than
an upside-down U (which it currently is). If that were to happen, then the
“maximal entropy” states would be the two extremes; either all the units
would be in state A, and none in state B, or the reverse. This would be the
exact opposite of getting a maximal distribution among all possible states.

Thus, we remember to keep the minus sign in front of the summation in
the entropy term, and we know why it is there.

The free energy equation

The notion of free energy, which underlies a great deal of thermodynamics,
is also important in energy-based neural networks (e.g., the Boltzmann
machine), as well as variational inference, which is an advanced method in
machine learning. Early neural networks, such as the Hopfield network and
the Boltmann machine (trained using simulated annealing), relied on a free
energy minimization approach.

In fact, free energy minimization has become almost a unifying philo-
sophical theme throughout the realms of energy-based neural networks and
variational methods.

This subsection gives an altogether too-brief overview of free energy.
We'll give this topic the respect that it deserves in the book-in-progress,
Statistical Mechanics, Neural Networks, and Artificial Intelligence. Our goal,
for now, is simply to recognize a free energy equation when we see
one.

As we’ll observe, this is not as simple as it seems.

One challenge is that the free energy equation shows up in two
remarkably different forms. It’s a lot like recognizing that a specific
caterpillar corresponds with a certain specific butterfly. They look very
different, but they are two expressions of the same creature.

A second challenge is that there is a range of notation used for free
energy. As we observed with entropy, the notation could commonly be
either an S or an H. For free energy, the notation can be F' (for free energy,
not surprisingly), or H or A (for Helmholtz free energy), or G (for Gibbs
free energy). These distinctions make a great deal of difference in the world
of physical chemistry, where pressure and volume come into play.



1.2. STATISTICAL MECHANICS EQUATIONS 15

In the realm of machine learning, there is no change in either the pressure
or the volume of a system; these concepts are not relevant. Thus, terms
involving changes in those variables drop out of the free energy equation,
and the reader may find authors referring to a (simple) free energy, or to
Helmholtz or Gibbs free energies, and all meaning the same thing.

Further, once the notion of free energy is fairly well understood, there are
a number of specific models that are common and well-known to physicists.
These include the Ising model, together with its variants. One might read,
for example, about something like a Bethé-Peierls or mean-field model. We
will ignore these variants in this Précis, and concentrate on the basics.

It is possible to derive the second form of the free energy equation (with
a little calculus and elbow grease) from the first. For now, I ask you to take
on faith that the two following equations mean the same thing.

The first formulation gives the free energy in terms of the energy of each
unit, as encapsulated in the partition function.

The Free Energy - first version (as

logarithm of the partition function:

F = —ksTn(Z).

The most common way in which we see the free energy introduced in a
paper uses the expression just given, so that the free energy involves the
partition function.

Reading the First Version of the Free Energy

Equation:

The free energy is the negative of a constant (Boltz-
mann’s constant times temperature) times the
natural logarithm of the partition function, Z.

There is an entirely different way of expressing free energy; as the
difference between the enthalpy (or chemical potential, or ability to do work)
minus the temperature times the entropy.

This is a crucial equation as we start using (free) energy minimization
methods in artificial intelligence and machine learning. It means that the
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equilibrium, or minimal free energy state, is reached as a balance between
getting the lowest possible energy (enthalpy) values while still maximizing
entropy. This is a trade-off.

Eqn. 1.4 gives the second form of the free energy equation as

The Free Energy - second version (as the

difference between enthalpy and
temperature times entropy):

F=U-TS§, (1.4)

where U is the chemical potential, T" is temperature and S is the entropy.

Reading the Second Version of the Free Energy

Equation:

The free energy the difference between the chemical po-
tential, U, and the temperature T" times the entropy, S.

U, as mentioned previously, is the chemical potential, often defined as the
ability of the system to absorb or release energy during chemical reactions.
It can include a number of factors, most significantly (for our purposes) the
enthalpy, which is the energy associated with each unit. Since the “other
factors” do not come into play in machine learning, various authors may use
either the term chemical potential or enthalpy. They may use U or E or H
to express these terms, although U is generally reserved for the chemical
potential, while £ or H more commonly refer to the enthalpy.

As mentioned earlier, various letters are used for different terms, depend-
ing on the author’s whim and provenance, in the free energy equation. Thus,
we could see the Eqn. 1.4 show upas G=H —TS oreven A =U —TH,
if the author wanted to be particularly confusing and substitute H (the
information-theory way of expressing entropy) for S (the physical chemist’s
way of expressing entropy).

While the authors will usually define their terms, they occasionally leave
interpretation up to their reader. Then, we have to infer what they mean
from context.
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The chemical potential (and often the

enthalpy) of a system:

U = (e;) + {eij)-

The chemical potential (and/or enthalpy) is often given as the sum
of two terms; one expressing the expected energy associated with each
individual unit, and the other expressing the energy associated with pairwise
interactions between the units.

Reading the Enthalpy Term:

The chemical potential (and/or enthalpy) is the
sum of the expected energy per unit, e;, together
with the pairwise interaction between units, e; ;.
Note that we are changing the meaning of the sub-
script j here; it now refers to another unit in the
system, and not to a distinct microstate. This
is to make it easier to read the next example,
which quotes from one of John Hopfield’s papers.

Example 1.3.
Suppose that you were to read John Hopfield’s original paper, introducing
what we now call the Hopfield neural network [1]. Figure 1.8 gives an extract
from this paper. Reading this, we would note the equation

E=— YT,

i#j g

In this equation, T; ; refers to the interaction energy between two units,
Vi and Vj, and these units can have values of “0” or “1.”

This tells us that we're dealing with a free energy approach, and that
we've just learned something about the interaction energy (more properly,
the interaction enthalpy) of the system. Hopfield’s next equation gives us
an expression for AFE, which tells us how the energy changes over time.
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Extract fromJ. Hopfield (1982), Neural networks and physical
systems with emergent collective computational ahilities

Studies of the collective behaviors of the model

The model has stable limit points. Consider the special case T}
= T}, and define

=3 SX TV, u

i

AE due to AV, is given by

AE = —AV, Y T,V; . (8]
bl
Thus, the algorithm for altering V; causes E to be a monotoni-
cally decreasing function. State changes will continue until a
least (local) E is reached. This case is isomorphic with an Ising
model. T; provides the role of the exchange coupling, and there
is also an external local field at each site. When T; is symmetric
but has a random character (the spin glass) there are known to
be many (locally) stable states (29).

Figure 1.8: Extract from John Hopfield’s paper, “Neural networks and
physical systems with emergent collective computational abilities;” one of
the earliest papers in modern neural networks.

Hopfield specifically says that AF is a “monotonically decreasing func-
tion,” meaning that the energy of the system is always either decreasing or
holding steady; it never increases. This tells us that we're dealing with a
free energy minimization approach.

When he further says that “the case is isomorphic with an Ising model,”
he’s saying that we’re very similar in our method to one of the classic models
in statistical mechanics, where units can be either “on” or “off” (as with
many neural networks), and that there is a prescribed energy-of-activation
for the “on” units, and there is also an interaction energy between units.

Even if we knew nothing more about statistical mechanics and the
Hopfield neural network than what we’ve read in this Précis, we’d now
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know that the Hopfield neural network lives smack in the middle of the
statistical mechanics universe, and that it is trained using a (free) energy
minimization method. We’d also know that this neural network, even if
not popular today (due to memory constraints for storing patterns in this
network), is part-and-parcel of the world of neural networks and machine
learning methods that use energy minimization.

We’ve given the most minimal and superficial attention to the notion of
free energy. This concept has been foundational to modern neural networks
(e.g., the Hopfield network, the Boltzmann machine, and all derivatives and
descendents of the Boltzmann machine). It continues with even broader scope
and implications today, as it plays a key role in multiple machine learning
methods. The book in progress, Statistical Mechanics, Neural Networks,
and Artificial Intelligence, will cover this topic in much greater detail, and
trace its use from early neural networks through current deployment in more
recent neural networks as well as machine learning theory and applications.

We now turn our attention to an entirely different form of logic and
reasoning, that associated with Bayesian probabilities.

1.3 Bayesian Probability Equations

Bayesian probability theory allows us to express information and ask ques-
tions of a “something depends on something else” nature. For example, we
can ask ourselves what the likelihood is of rain on an August day in a certain
city, or whether our favorite sports team will win their next game.

The Bayesian a posteriori probability is given as

The Bayesian a Posteriori Probability:

plylz) = p(y, ©)/p(x). (1.5)

This a posteriori Bayes equation expresses the likelihood of seeing one
event (y), dependent on - or conditional upon - seeing another event (z).
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Reading the a Posteriori Probability Equation:

The probability of observing a certain value for y (the
dependent variable), conditioned (or dependent upon)
the independent variable z is equal to the joint proba-
bility distribution of y and z, divided by the probability
of . The vertical slash in p(y|z) means that “y is
conditioned (or dependent on) z.” The comma in p(y, x)
means that we look at the two distributions indepen-
dently; this is called the joint probability distribution.

As an example of a simple probability distribution, Figure 1.9 shows
the (Gaussian or normal) distribution of the height of males in the United
States.

Gaussian Curve: Adult Male Height (USA)

e Mean =176.2 cm; Standard Deviation =7.4cm*
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Figure 1.9: The height of males in the United States follows a Gaussian
(normal) distribution. *Data sources: See [2] for height data and [3] for
standard deviation.

From Figure 1.9, we could create a simple probability statement, such as
p(height), meaning “the probability that a man has a height within a given
range.”
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To use the more complex conditional dependency of p(y|z), we would
be asking about the probability of one event conditioned or dependent on
another. For example, if we had the probability distributions of heights of
both men and women, then — if we were discussing a person of a given height
— we could ask about the probabilty p(y) of the gender of the person (male
or female) depending on the given datum of their height; this would be a
p(gender|height) conditional dependence.

Of course, the conclusiveness of our probability depends on the value of
the independent, observed variable (height). If a person is 6 feet tall (183
cm), then the person is much more likely to be male than female. If the
person is 5 feet, 7 inches (170 cm), the answer will be more equivocal.

One way in which Bayesian probability theory can handle these types
of questions is to add more independent variables; that is, make x more
complex. (Or, alternatively, we can think of this as p(y|z,w,v,...)). For
example, we could look at Body Mass Index (BMI), which is a bit less
dependent on height than is weight [4]. (We want independent variables, to
the extent possible.) So long as we can obtain independent measurements
that cover these extra variables, we're fine.

The challenge in working with Bayesian probabilities is that — while the
theory is elegant — putting the theory into practice requires that we must
specify the distributions of all the variables that we’re considering. This
usually involves gathering (collecting, analyzing, and reporting) data, which
usually involves expense — if the task can be done at all.

Nevertheless, Bayesian probabilities are much in demand for a great
variety of tasks, ranging from predicting a person’s shopping behaviors to
whether or not the blob of pixels just detected by an autonomous vehicle’s
cameras are a paper bag blowing in the wind, or a child running out between
from behind a parked car.

Efforts such as the latter have led all the major automobile manufacturers
to conduct extensive training regimes of their vehicles in both isolated and
controlled enclaves as well as actual (human-use) driving environments.
Even so, there will inevitably be situations that can not be anticipated.

Because we will never be able to specify all the situations that can lead
to probabilistic decision-making, there is a lot of attention within machine
learning circles on inferring the nature of a new situation. Inference, regarded
as a key element of machine learning, takes estimation to a new level. This
will be one of the most important topics in the book (in progress), Statistical
Mechanics, Neural Networks, and Artificial Intelligence.
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1.4 Machine Learning Equations

Machine learning is a hybrid discipline drawing from multiple sources, most
notably statistical mechanics and Bayesian probability theory. This is not
only a very rich topic, it is growing very rapidly. The following two subsec-
tions briefly address two of the most pertinent machine learning equations;
the Kullback-Leibler divergence and the variational Bayes approximation.

The Kullback-Leibler Divergence

The Kullback-Leibler divergence is given as

The Kullback-Leibler Divergence:

Dkr(qllp) = > q)inlq(y)/p(y)].  (1.6)

The Kullback-Leibler divergence, often written as D, is a difference
measure. It represents how well a model approximates a data distribution,
and is one of the most widely-used equations in machine learning and
information theory.

While this formulation considers ¢ to be the model and y to be the
actual data, the Dy can be used to compare any pair of models or data
distributions.

The Dy, measure is not symmetric; that is Dk (q||p) # Dxr(pl|q).

Reading the Kullback-Leibler Divergence
Equation:

The Kullback-Leibler divergence is the expectation of
the logarithmic difference (“log-difference”) between two
probability distributions. It is the sum (or integral) of the
model value, ¢(y) (for a certain histogram bin) times the
logarithm of the model value over the actual observed
data. The double parallel lines (||) are a notation
invented for difference (divergence) measures; so that
(ql|p) is read as the divergence of q with regard to p.
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The Kullback-Leibler divergence is one of the most popular and useful
measures within machine learning. It is also a component of more extensive
methods, such as variational approximations, discussed next.

Variational Bayesian Approximation

One of the most essential machine learning tasks is inference. Inference is
one step beyond learning. In learning, we can train a neural network (or deep
learning system) based on training data; data for which the “right answers”
have been predetermined. (This is sidestepping the issue of generative
systems, where the systems figure out the data distributions on their own.)

In inference, the task is to make the best approximate judgment when
given a situation that has not previously been learned.

One of the most valuable machine learning inference equations is the
variational Bayes approximation, which is actually a family of methods. One
formulation for a variational Bayes equation is given as

The Variational Bayes Approximation:

7 (y) = a'f’gqr(ryl)ie%K Lig)llp(y, )].  (L.7)

We read this variational Bayes equation as follows

Reading the Variational Bayes Approximation:

The specific model, ¢*(y), that minimizes the Kullback-
Leibler divergence between the model ¢ and the
observed data p is one that is selected from a family
of possible models @, where ¢ is an element of (or
is a member of) @, or ¢(y)e@. It is the one whose
arguments (parameters) minimize the K-L divergence.

\. J

Variational methods, both Bayesian and other, are at the center of
many machine learning approaches. They will be discussed at length in
the book-in-progress, Statistical Mechanics, Neural Networks, and Artificial
Intelligence.
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1.5 Summary of the Seven Equations

The seven equations identified here form the cornerstone of energy-based
machine learning. They do not comprise all of the equations. In fact,
they are somewhat like defining mountains in a mountain range. There
are many equations and methods that will interest us, such as contrastive
divergence (for the Boltzmann machine), expectation mazimization and
energy minimization, and others that are very important.

Nevertheless, with these seven equations in hand, you can situate yourself
with regard to what you are reading in machine learning. That means, for
example, that if you come across the Kullback-Leibler divergence, you not
only know how to read the equation, but you know that the material is
about measuring the goodness of a model with regard to some data.

This short Précis has very lightly overviewed material that will be
included in the forthcoming book, Statistical Mechanics for Neural Networks
and Machine Learning. Until the book is published, various draft chapters as
well as relevant blogposts will be available at: www.aliannajmaren.com.

Author’s Note: 1 combed through a large number of resources in
preparing this Précis. The ones that I found most valuable, in terms of
giving useful, clear, and simple explanations include the book written by
Dr. David Tong [5], along with a tutorial by Denker [6].
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