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Abstract

The Kullback-Leibler (K-L) divergence has become foundational in
the machine learning community, leading to various authors expressing
the same formula with differing notations. This can cause difficulties for
those attempting to trace the same (or similar) lines of thought across
various research papers. This work addresses the different notation
forms used by various authors, e.g., Matthew Beal and David Blei et
al., along with Diederik Kingma and Max Welling, and with particular
attention to the early works (2013-2015) of Karl Friston and colleagues.
In addition, we include a brief summary of the K-M (Kikuchi-Maren)
divergence, usefu when applying the cluster variation method (CVM)
as a model in variational methods.

Keywords: Kullback-Leibler divergence, K-L divergence, KL di-
vergence, Kikuchi-Maren divergence, K-M divergence, KM divergence,
cluster variation method, variational inference, variational Bayes, no-
tation, active inference.
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1 Introduction and Overview
One challenge in reading both the classic and recent works in energy-
based neural networks and machine learning (especially variational
methods) is that concepts such as the Kullback-Leibler (K-L) diver-
gence are often expressed using different notation. This requires the
reader to track the precise meaning of each variable in each different
work. This task can be more difficult when variable meanings are
reversed.

A particular point of interest is that in the works by Blei et al.
(2017) and Beal (in his dissertation; Beal (2003)), an important variable
means one thing in one work, and something different in the other.
Further, the notation used in early works by Karl Friston and colleagues
(Friston (2013); Friston et al. (2015)) is exceptionally complex, as it
attempts to describe how a given system interacts with a representation
of that system through a Markov blanket. More recently, Kingma and
Welling (2013, 2019) have also produced tutorials on variational Bayes.

Finally, Maren (2019) has developed a specific divergence measure
(the Kikuchi-Maren divergence) that is akin to the KL divergence,
but which is specific for use with Kikuchi’s cluster variation method
(CVM).

Thus, this Technical Note serves three purposes:

• Review of how the reverse Kullback-Leibler divergence, rather
than the simple Kullback-Leibler divergence, is commonly used
in deriving the algorithms for energy-based neural networks and
machine learning methods such as variational inference,

• Identify the notational differences used by various key authors,
by presenting a table of notation that serves as a Rosetta stone
for cross-comparisons, and

• Introducing the Kikuchi-Maren (K-M) divergence method pro-
posed by Maren (2019) that allows the cluster variation method
to be used as a model within a variational context.

A further advantage to the reader is that, through extensive quota-
tion from original sources, the reader’s time can be effectively focused
on cross-comparisons of material within this single document, rather
than separately finding and reading each of the relevant source works.

The following Table 1 presents a glossary of the thermodynamic
terms used in this Report.
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Table 1: Thermodynamic Terms

Variable Meaning
Activation enthalpy Enthalpy ε0 associated with a single unit (node) in the “on” or

“active” state (A); influences configuration variables and is set to
0 (for this work) in order to achieve an analytic solution for the
free energy equilibrium

Configuration
variable(s) Nearest neighbor, next-nearest neighbor, and triplet patterns

Degeneracy Number of ways in which a configuration variable can appear
Enthalpy Internal energy H results from both per unit and pairwise interac-

tions; often denoted H in thermodynamic treatments
Entropy The entropy S is the distribution over all possible states; often

denoted S in thermodynamic treatments and H in information
theory

2 Kullback-Leibler Notation Used by
Various Authors
The following Table 2 presents a “Rosetta Stone” of the differing
notations as used by Beal (2003), Friston and colleagues (Friston
(2013); Friston et al. (2015)), Blei et al. (2017), and Kingma and
Welling (2013, 2019).

An important note on the historical evolution of the Friston et al.
notation (op. cit.) as compared with that of Beal is that Matthew
Beal wrote his dissertation on variational inference in 2003. Friston
referenced Beal in his own works, and heavily adopted Beal’s notation
(Friston (2013); Friston et al. (2015)).

In order to understand Friston’s works, the most relevant starting
place is Beal’s dissertation, since Beal presents derivations for the
various equations, whereas Friston (and colleagues) simply present
their final form.

Also, it is worth noting that in recent years, Friston (in concert
with other authors) has changed both his emphasis and his notation,
so the notation presented here corresponds to Friston’s work in the
2013-2015 timreframe; variations appeared after that.

Friston and Beal both deal with the role of Markov blankets. In
this work, we use only the simpler form of Beal’s notation. However, it
is central to Friston’s work, and so we include it in our discussion here.
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Table 2: The Rosetta Stone: Notation from Beal, Friston, Blei et al., and
Kingma and Welling

Variable / Notation Beal Friston Blei et al. Kingma &
Welling

Observable Variable;
Dependent or (Friston) “Internal

States”
yi λ, r̃ xi x

Hidden Variable;
Independent, Latent, or (Friston)

“External States”
xi Ψ̃ zi z

Markov “sensing” units
(Friston) - s̃ - -

Markov “active” units
(Friston) - ã - -

Model parameters θ m - θ

Model distribution q(x) (1) q(Ψ|λ) (2) - -

Observations distribution p(y|θ) (3) p(Ψ, s, a, r|m)
(4) - -

Variational free energy - F (s̃, ã, r̃) - -

The authors specifically identify their notation, according to the
following enumerated points (corresponding to elements of Table 2):

1. Observations distribution - Beal: p(y|θ): “ ... [the] generative
model that produces a dataset y = {y1, ..., yn} consisting of n
independent and identically distributed (i.i.d.) items, generated
using a set of hidden variables x = {x1, ..., xn} such that the
likelihood can be written as a function of θ ...” (Beal, 2003, p.46,
Eqn. 2.9),

2. Observations distribution - Friston: p(Ψ, s, a, r|m): “... er-
godic density p(Ψ, s, a, r|m) [is] a probability density function
over external ψ ∈ Ψ, sensory s ∈ S, active a ∈ A and internal
states λ ∈ Λ for a system denoted by m” (Friston, 2013, p. 2,
Table 1),

3. Model distribution - Beal: qxi(xi): “we use a distinct distri-
bution qxi(xi) over the hidden variables ...” (Beal, 2003, p. 47,
just before Eqn. 2.12), and
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4. Model distribution - Friston: q(Ψ|λ): “ ... a probability
density over external states q(Ψ|λ) that is encoded (parame-
trized) by internal states.” (Friston, 2013, p. 4, just before
Lemma 2.1).

We will examine how each author forms their respective notations
in more detail later in this work.

3 The Kullback-Leibler Divergence: Orig-
inal Work
The expression that interests us the most is taken directly from Kull-
back and Leibler’s original work (Kullback and Leibler (1951)).

They state, “We shall denote by I(1 : 2) the mean information for
discrimination between H1 and H2 per observation from µ1; i.e. [in
Eqn. 2.4 of their work]

I(1 : 2) = I1:2(X) =

=
∫
dµ1(x) log f1(x)

f2(x)

=
∫
f1(x) log f1(x)

f2(x)dλ(x).

(1)

where the terms are originally defined by Halmos and Savage Halmos
and Savage (1949), specifically:

• The data, X: [There is a] “ set X of objects x, to be thought
of as possible outcomes of an experimental program, distributed
according to an unknown one of a certain set of probability
measures” (see Halmos and Savage, p. 225).

• There exist hypotheses Hi; i = 1, 2; where the hypothesis
is that x was selected from the population whose probability
measure is µi, i = 1, 2.

• There is a probability measure λ such that λ ≡ {µ1, µ2}; i.e.,
λ is some linear combination of µ1 and µ2.

Returning to the original Kullback-Leibler work, we read:
“Further, we define the functions fi as

µi(E) =
∫

E
fu(x)dλ(x), (2)

5



where E is a subset of X.”
While this expression is couched very abstractly, in succeeding

works by others and in practical applications, µ1 has come to be
thought of as the probability of observing some actual real data.

4 Recent Notation for the Kullback-
Leibler Divergence
The Kullback-Leibler divergence was designed to measure the difference,
or “divergence,” between any two sets that have the same support
basis. These could be two data sets, taken over the same interval and
with the same sampling. This could also be a divergence between a
set of data observations and the predictions made by a model.

The notation proposed by Kullback and Leibler is abstract, and
does not indicate a preference for either of these two uses for the
divergence measure.

Very commonly in recent literature, the notation used is the p and
q notation, where p represents the probability with regard to the actual
data, and q represents the model-based probability of occurrence of an
observation. Thus, for example, we see the Kullback-Leibler divergence
is used in an autoencoder in Balesdent et al. (2016). In their work, we
see the K-L divergence expressed as:

“Let P and Q be two probability distributions defined by their
pdf [probability distribution function] p and q with support Rd. The
Kullback-Leibler divergence between P and Q is defined by

“DKL(P,Q) =
∫

Rd
ln

(
p(x)
q(x)

)
p(x)dx.” (3)

Similarly, the K-L divergence is expressed by Theodoridis (2020)
(Eqn. 2.161) as

“KL(p||q) :=
∫ ∞

−∞
p(x)ln

(
p(x)
q(x)

)
dx.” (4)

Even the Wikipedia (although not typically regarded as an ac-
ceptable source for citations) uses the same notation, as illustrated
first for the continuous case Wikipedia-Kullback-Leibler-Divergence
(Wikipedia-Kullback-Leibler-Divergence):
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DKL(P ||Q) =
∫ ∞

−∞
p(x)ln

(
p(x)
q(x)

)
dx. (5)

Similarly, the notation presented for the discrete case is:

DKL(P ||Q) =
∑
xϵX

P (x)ln
(
P (x)
Q(x)

)
dx. (6)

Thus, the casual (if voracious) reader might be forgiven for assuming
that, throughout the literature, P referred to an actual data set,
whereas Q referred to the model.

It may come as a surprise to the unwary that in the realm of energy-
based neural networks and variational inference, instead of the typical
Kullback-Leibler divergence, we use the reverse Kullback-Leibler
divergence.

A typical form for expressing the reverse KL divergence is

DKL(Q||P ) =
∑
xϵX

Q(x)ln
(
Q(x)
P (x)

)
dx. (7)

This means that the distribution that we are comparing against a
given “reference" is the model; we are testing various models to see
how well they minimize the divergence. We will address this later in
this work.

Occasionally, we will see that the numerator and denominator
within the logarithmic term are interchanged, and there is a “minus"
sign in front of the equation, so that

DKL(Q||P ) = −
∑
xϵX

Q(x)ln
(
P (x)
Q(x)

)
dx. (8)

When this is done, it is to set up the reverse K-L divergence for later
steps in which a subsequent resulting equation will formally resemble
a free energy equation from statistical mechanics.

5 A Brief Mathematical Digression
This section is directed towards those who are relatively new to work
with the K-L divergence. More experienced readers can skip this
section completely.
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It will be easier if we imagine that our various probabilities and
model predictions are taken in discrete units, so we consider the discrete
case equation for the K-L divergence, given previously as Eqn. 6.

We can ask ourselves: what would happen if the multiplier in front
of the logarithm of the difference term were the model probability, and
not the data probability?

We will compare the two different formulations, one where the
multiplier is p(x) and the other where it is q(x) (the first is the K-L
divergence, and the second is a made-up contrary equation, just to
show the difference.)

In one sense, it might make sense to multiply by the expected data
value, that is, the one given by the model. That would (presumably)
avoid all sorts of bumps in the data distribution.

5.1 The KL Divergence as It Is: p(x) Is Multi-
plier
We begin by looking at a graph of the logarithm function, as shown in
Figure 1.

We are interested in the area around x = 1, and we know that
ln(1) = 0.

Let’s consider two cases, one where p(x) > q(x), and the other
where p(x) < q(x).

Case 1: p(x) > q(x)
In this first case, the probability term p(x) is a bit more than we

are expecting; p(x) > q(x).
In this situation, the ratio of p(x)/q(x) is a number greater than

one; p(x)/q(x) > 1, which means that the logarithm of this ratio is
both positive and relatively small, as the slope for the logarithm in the
neighborhood of small numbers that are greater than one is relatively
low.

Thus, we’ll have a slightly-larger-than-expected number multiplying
a logarithmic result that is not zero, but is also relatively small - given
the small slope in that region of the curve.

Case 2: p(x) < q(x)
Let’s consider the other case, where p(x) < q(x). In this case,

p(x) is smaller than that anticipated by our model. The ratio of
p(x)/q(x) < 1, so we take the logarithm of a fraction, which gives us a
negative number.
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Figure 1: The logarithm function, plotted for the neighborhood where x = 1.

Not only do we get a negative number, but as p(x) diverges more
and more from q(x) (p(x) << q(x)), we get a smaller fraction value,
and the logarithm of that ratio becomes a progressively larger negative
number; the slope increases as p(x) gets smaller relative to q(x).

The logarithm of that ratio may be getting larger, but it is being
multiplied by p(x), which is smaller - so the effects of the two numbers
tends to cancel out.

In short, if p(x) is greater than expected, its impact is minimized
because it multiplies a value that is (relatively) small.

If p(x) is less than expected, it multiplies a number that is larger
(in magnitude) than what would be the case if p(x) diverged from q(x)
in the other direction - but again, the effect is minimized because p(x)
is a smaller-than-expected value.

In sum, when p(x) is the multiplier, the impacts of deviance from
the expected q(x) are minimized, either way.

9



Figure 2: Three major disciplines or lines of thought converge in creating
the framework for variational inference: the reverse K-L divergence, Bayesian
probabilities, and statistical mechanics.

5.2 If the KL Divergence Were Different: If
q(x) Was Multiplier
In contrast, if q(x) were to be the multiplier, we would have exactly
the opposite - the impact of divergence of the observed probability p(x)
from the expected or model probabiliyt q(x) would be exaggerated.
(Showing this is left as an exercise for the reader.)

In sum, the construction of the K-L divergence makes intuitively
good sense.

6 Using the Reverse K-L Divergence
The goal of this section is to introduce how three different authors
- Matthew Beal, Karl Friston (and colleagues), and Blei et al. - use
similar (but still distinctive) notation for their work in variational
inference. (In the case of Friston and colleagues, the work is on active
inference.)

To do this, we offer figures drawn from a recent YouTube video
(Maren (2024)) that presents the reverse K-L divergence.
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Figure 3: Blei et al. offer a straightforward notation for the reverse K-L
divergence. Figure taken from Maren (2024).

The primary organizing concept is that the reverse K-L divergence is
the entry point to understanding energy-based methods and variational
inference. Once we establish this entry point, we use conditional Bayes
to rewrite the condiitional probablity within the divergence equation.
Once we’ve done that, mathematical manipulation gives us a result that
is isomorphic with a statistical mechanics-based free energy equation.
This is shown in Figure 2.

One of the most straightforward starting points is with David Blei
and colleagues, who have written an excellent tutorial on variational
inference. This work offers perspectives that are a bit more clearly
stated than found in Beal’s dissertation. Thus, we include Blei et al.
(2017) in our studies. (Note: Blei et al. was published to arXiv in
2018, although original publication dates were earlier.)

Blei’s notation for the reverse K-L divergence is shown in Figure 3.
Blei and Beal have contradictory notations. Specifically (see Ta-

ble 2), Beal uses xi for his hidden variables, and yi for his observable
variables. In contrast, Blei et al. use zi for the hidden variables, and
xi for the observables. Keeping track of the meaning of xi - from one
paper to another - takes extra effort. Thus, this work serves as a simple
cross-reference.
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Figure 4: Frisotn uses a reverse K-L divergence in his formulation of active
inference. Figure taken from Maren (2024).

Friston’s work is couched using the notation introduced by Beal, in
his dissertation on variational Bayes (Beal (2003)).

We also offer - very briefly - the notation used by Salakhutdinov
and Hinton (2012) in their work on deep learning. Their work is a
cornerstone for energy-based methods, and by including them in this
notational study, we can see how using the reverse Kullback-Leibler
divergence is consistent throughout both energy-based methods and
variational inference. We see their notation in Figure 5.

7 Transition to Variational Inference:
Rewriting the Bayesian Posterior Dis-
tribution
Using the reverse K-L divergence is the set-up for variational inference
as well as for energy-based methods (e.g., the restricted Boltzmann
machine).

The next step, after we establish the reverse K-L divergence, is that
we rewrite the Bayesian conditional dependence term (p(x)) within
the logarithmic term (log(q(x)/p(x))).
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Figure 5: Salakhutdinov and Hinton (2012) also use the reverse K-L divergence
in their formulation of energy-based methods; this figure shows their notation
for the probability of the hidden (latent) nodes conditioned on the visible, as
well as the approximating model Q. Figure taken from Maren (2024).

Once we do this, we can rewrite the equation in two different ways.
One is useful, the other is not. Variational inference proceeds by
working with the “useful” version of the resulting two equations.

Before we rewrite the K-L divergence term of Eqn. 12, we first
recall how the Bayesian posterior probability density can be rewritten,
as framed in Blei et al. (2016).

Consider a system that has a set of observable variables v = v1..V

and a set of latent or “hidden” variables w = w1..W . In a feedforward
neural network, for example, the observable variables v would be the
values of the output layer neurons, and the latent (hidden) variables
would be the associated values of the hidden layer w neurons.

Similarly, we can envision many other situations in which we can
identify an observation that is a function of multiple input factors.
Sometimes, not all of those input factors can be directly observed.

In the Bayesian formalism, the prior density of the (set of) latent
variables w is defined as p(w). A Bayesian model relates these latent
variables to the observations v through the likelihood p(v|w). The
interpretation is straightforward; it speaks to the likelihood of observing
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an outcome or observable variable v given the hidden variables w. This
is called the prior distribution.

Sometimes, though, we don’t have an accurate means of estab-
lishing the values for the latent or hidden variables w. Thus, we use
approximate inference to determine the posterior distribution, p(w|v).
This means that we are trying to estimate the values of the hidden
variables, seeing only the values for the observable variables.

To rewrite the probability density, we first consider a system that
can be described in terms of a joint density of latent variables w = w1..W

and observations (visible variables) v = v1..V , where the conditional
density function is given as

p(w|v) = p(w, v)/p(v). (9)

Conversely, we also have

p(w, v) = p(w|v)p(v). (10)

8 Friston’s Formulation of the Free En-
ergy Function
This section very briefly reviews how Friston approaches active infer-
ence, beginning with the reverse Kullback-Leibler divergence.

8.1 Interpreting Friston’s Use of the K-L di-
vergence
Friston (combining Friston (2013) (Eqns. 2.7 & 2.8) and Friston et al.
(2015) (Eqn. 3.2)) writes the Kullback-Leibler (K-L) divergence as

DKL[q(ψ̃|r̃)||p(ψ̃|s̃, ã, r̃)] =
I∑

i=1
q(ψ̃|r̃) ln

(
q(ψ̃|r̃)

p(ψ̃|s̃, ã, r̃)

)
. (11)

We briefly interpret the physical meaning of the terms in Eqn. 11.
The K-L divergence measures the divergence between the model-distri-
bution q of (i.e., probability distribution over) the external system,
as conditioned on the reprsentation r̃, and the actual model of the
external system itself p(ψ̃|s̃, ã, r̃).
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Figure 6: An Interpretation of Friston’s Notion of Modeling the External
System Ψ.

Friston (2013) describes his approach in saying “This means that
the internal states will appear to respond to sensory fluctuations based
on posterior beliefs about underlying fluctuations in external states. We
can formalize this notion by associating these beliefs with a probability
density over external states q(Ψ|λ) that is encoded (parametrized) by
internal states.”

The overall intention of Friston (2013) appears to be focused on how
we build an internal representation of an external world Ψ, mediated
via sensing and action units that communicate information over a
Markov blanket. This is illustrated in Figure 6.

Friston’s formulation frames how the external world Ψ can be con-
ceptualized as a Bayesian dependence on the internal representation.
Thus, we have a model of how the external world depends on the
representation, framed as q(Ψ|λ) (both λ and r are used by Friston,
in different works), and we have an actual set of observations that
represent a constructed model of how Ψ depends on the sensing and ac-
tion units, together with the representation r, expressed as p(Ψ|s, a, r),
with tilde notation removed for simplicity.
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The model-distribution q is a model of the external system, ψ̃,
which is why we write q = q(ψ̃|r̃). The key feature in computing q
is that (for the application being considered here) we take it at the
equilibrium state. That is, q corresponds to the equilibrium free energy
of the external system, which can be computed (or approximated) if
we have a suitable free energy equation. Thus, in Eqn. 12, we are
looking at the divergence between the model-distribution of the system
at equilibrium and the probabilities p of various components of the
system, potentially in a not-yet-at-equilibrium state.

The parameter(s) θ directly influence p, but the notation for θ is
suppressed in this section. We note that any time we write p(x), we
are implicitly writing p(x|m), because we are using p to represent the
notion of a model that uses a certain parameter set θ.

Thus, we can read the term q(ψ̃|r̃) as the “probability distribution
of the model of the external system ψ̃, which is computed based solely
on the value of the representational units r̃ that are isolated from the
external system ψ̃ by a Markov blanket, but these representational
units are to be considered with their at-equilibrium values.”

Next, we examine the term p(ψ̃|s̃, ã, r̃), which expresses the proba-
bility distribution of units ψ̃ in the external system, conditioned on
the Markov blanket sensory units s̃ and action units ã, along with
the representational units r̃. We recall, from the design of the entire
system (external plus Markov blanket plus representational units), and
also from figures given in Friston (2013) and Friston et al. (2015), and
replicated in Figure 6, that the representational units do not commu-
nicate directly with the external units. Thus, the dependence of the ψ̃
is very much an implicit relationship; one that is at a distance because
the direct interactions of the units in ψ̃ are exclusively with s̃ and ã.
Further, the system design is that the sensory units receive inputs from
the external units ψ̃, but do not directly influence the ψ̃ themselves.

Thus, the conditional relationship expressed in p(ψ̃|s̃, ã, r̃) seems a
little forced. However, it is the basis for our next steps in the derivation,
and we will think of it simply as stating that the external system can
indeed be influenced by the evolving values for the representational
system r̃.
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8.2 The Kullback-Leibler Divergence - As In-
terpreted by Friston et al.
Replicating the notation and description found in Maren (2019b), Sub-
section 3.2, “Integrating over the model space,” “we envision a system
where the model system q refers strictly to the internal (representa-
tional) units r̃. Over time, the goal is to adjust the units r̃ so that the
free energy of the model q approximates that of the external system
with units ψ̃.”

The following is extracted from Maren (2019b) Maren (2019),
which provides a detailed discussion of the variational Bayes method,
especially in the context used by Friston Friston (2013).

“Thus, the elements of our system that we’ve been considering so
far consist of three things:

1. “The external system which is composed of units ψ̃; we are trying
to model this, and we operate under the presumption that we
cannot always directly compute certain measures on this system,

2. “The internal system which is composed of units r̃; at any given
moment we can determine certain measures on this system, yield-
ing L(s̃, ã, r̃) (we are temporarily ignoring s̃ and ã), and

3. “A model of the external system expressed via the internal system,
q, where the chief distinction is that when we take an actual
value for q, we do so with the presumption that the internal
system is brought to a free energy equilibrium for a given set
of parameter values θ. This means that the measures for a
given distribution-in-the-moment, as represented by L, would be
adjusted to represent what they would be if the internal system
were brought to equilibrium, for a specific set of θ.

“This key divergence expression is given as

DKL[q(ψ̃|r̃)||p(ψ̃|s̃, ã, r̃)] =
I∑

i=1
q(ψ̃|r̃) ln

(
q(ψ̃|r̃)

p(ψ̃|s̃, ã, r̃)

)
. (12)

“This Eqn.12 uses notation proposed by (Friston (2013)).”
“The previous Eqn. 12 includes a summation sign, which is typically

found in expressions of the K-L divergence. This summation, however,
refers to summing over all instances of data points in the system being
modeled (here, denoted ψ̃ (as it occurs with a specific probability p)
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and the corresponding points in the model, denoted q(ψ̃). In our case,
our use of the notation ψ̃ refers to the full collection of elements being
modeled, and the summation sign is not needed. Thus, without loss of
meaning, we can rewrite Eqn. 12 as

8.3 Friston’s Free Energy Expression
In this subsection, we briefly identify how Friston uses the reverse K-L
divergence (from the previous subsection in this work) in the second
half of Eqn. 13; the equality between the “variational free energy” and
the sum of the pooled negative log probabilities of sensory states (and
their accompanying representational and active states) and the K-L
divergence.

Specifically, Friston (2013) (Eqns. 2.7 & 2.8) and Friston et al.
(2015) (Eqn. 3.2) formulate this as

F (s̃, ã, r̃) = L(s̃, ã, r̃) +DKL[q(ψ̃|r̃)||p(ψ̃|s̃, ã, r̃)]. (13)

In a related work, we discuss Friston’s free energy in more detail
Maren (2019). Specifically, in that work, we:

1. Obtain a precise mathematical formation for F (s̃, ã, r̃), and
2. Interpret this mathematical formulation in a useful manner.

The objective in this paper has been limited in scope to introducing
Friston’s notation and cross-comparing it with that used by others, so
that Friston’s work can be read in context.

9 A New Divergence Measure for Us-
ing the 2-D Cluster Variation Method
This entire work, until now, has been devoted to the Kullback-Leibler
divergence.

There are occasions on which an alternative divegence measure is
needed.

One such occasion is the case where we use the 2-D cluster variation
method (2D CVM) as a model within a variational situation. The
2D CVM was introduced first by Kikuchi (1951), and expanded by
Kikuchi and Brush (1967). Maren (2016) described the 1D CVM as a
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method for neurophysiologically-based modeling, and then broadened
the scope to the 2D CVM in Maren (2021).

The unique advantage of using a 2D CVM model is that the model
can itself be brought to equilibrium, as shown in Maren (2021).

In order to make the 2-D CVM useful as a modeling tool, it requires
a divergence method that will allow us to find the “best fit” for the
model against the representational topography.

The reason that simple application of the Kullback-Leibler diver-
gence is not applicable is that it does not address the full suite of
(configuration) variables used in constructing the 2D CVM grid and
the equilibrium-based model of that grid.

As an example, initial experiments with the 2D CVM as a model
use the case where the probabilities of a grid node being in state A or
state B are equiprobable, so that the logarithm of their ratio is zero.
If the divergence were simply limited to the notion of whether a given
node was “on” ( state A) or “off” (state B), then we wouldn’t be able
to compare topographries.

Thus, we need an expanded divergence measure, one suited for
comparing CVM-based models and data representations.

Maren (2022) proposed a divergence suitable for working with mod-
els where the configuration variables (nearest-neighbor, next-nearest-
neighbor, and triplet values) may be different in the model from the
representation, even when the probability of occurrence of unitary
nodes in a specific state is the same, or x1 = x2 = 0.5.

If we were concerned only with the distribution of nodes in “on”
and “off” states; i.e., measuring only x1 and x2, then expressing the
K-L divergence would give us

DKL[q(r)||p(r)] =
2∑

i=1
xi,q ln

(
xi,q

xi,p

)
. (14)

In this case, the summation would be over two states, and we would
have p(r) = x1 in the topography that we are modeling, and q(r) = x1
in the resultant, free-energy-minimized topography. For clarity, we
could identify these as p(r1) = x1,p and q(r1) = x1,q, and p(r2) = x2,p

and q(r2) = x2,q The associated parameter set is given as θ = {ε0, ε1}.
When x1 = x2 = 0.5, then ε0 = 0.

If we were to apply this to the natural topographies that were
selected for this work, the divergence value that would be found by
applying Eqn. 14 would yield a value of zero, regardless of the h-value
(or correspondingly, the ε1) used. This is because by selecting an
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equiprobable distribution of units, we are constraining that p(r) =
q(r) = 0.5 for both the “on” and ‘’off” states.

Clearly, this Eqn. 14 would be neither sufficient nor appropriate
for our needs.

To work with natural topographies and their represenations, or
with any 2-D system where the interest is in local topographies, we
need to include terms indicative of relations between the remaining
configuration variables.

To do this, we introduce a new divergence measure, expressed as

D2D−CV M [q(r)||p(r)] =

2
3∑

i=1
βiyi,q ln

(
yi,q

yi,p

)
+

3∑
i=1

βiwi,q ln
(
wi,q

wi,p

)

−
2∑

i=1
xi,q ln

(
xi,q

xi,p

)
− 2

6∑
i=1

γizi,q ln
(
zi,q

zi,p

)
(15)

We refer to this as the Kikuchi-Maren divergence.
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