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Abstract 

This Technical Report presents the equations for a 1-D zigzag chain of bistate units using the 

Cluster Variation Method, a hierarchy of approximate variational methods for representing the 

equilibrium state of discrete systems, and offering improvement over the classic Bethe-Peierls 

approximation and the mean-field approximation by using configurational variables as well as 

state values for determining system entropy. An analytic solution is obtained for the case where 

the number of units in each state are equal (x1=x2=0.5). This makes it possible to express the 

equilibrium configuration variables in terms of the interaction enthalpy parameter h.  

1 Configuration Variables in the Cluster Variation Method 

The Cluster Variation Method (CVM), introduced by Kikuchi in 1951 and refined by Kikuchi 

and Brush in 1967, is a means of considering the entropy of a system as being more than simple 

distribution amongst the allowable states for individual units. Rather, it encompasses the patterns 

of units in space, considering nearest-neighbor, next-nearest-neighbor, and other clusters.  

1.1 Relations Between Configuration Variables 

We begin with a free energy equation where the entropy term represents not only the units 

distribution into active/inactive states, but also the distribution of local patterns or 

configurations. We can do this; it results in a much more complex reduced equation:  

       
  

 
                                             

Equation 1-1 
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In this equation,               , where v can respectively take on the values of xi, yi, and 

wi. Thus, for the first term within the RHS bracket of Equation 1-1 we have         

                   , as the weighting coefficients    are each 1, and we set      and 

      . (Note that the final terms of x – (1-x) = -1, etc., have been absorbed into    .) 

We give our attention now to other terms within the RHS brackets; those involving    and   . 

These are the nearest-neighbor and next-nearest neighbor configuration entropies, respectively. 

These “configuration patterns” – along with the weighting coefficients – are shown in Figure 1. 

 

 Figure 1: Configuration variables for the Cluster Variation Method, where the first variables (individual: A, B) 
are the same as used in the basic Ising equation, and the remaining three (nearest neighbor, next-nearest-

neighbor, and triplet) are “cluster” variables that induce pattern representations into the entropy term. 

Our goal is to find equilibrium point(s) of the free energy.  

In a simple Ising equation, we do this by taking the partial derivative of the free energy with 

respect to x, and setting it equal to zero. However, with Equation 1-1, we need a set of equations 

to express the distribution of local configurations. We use the set of partial differentials with 

respect to the cluster variables zi, each of which we set to zero. We then solve the resulting set of 

nonlinear equations for the zi at equilibrium as a function of the interaction energy. 
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1.2 Relations between Configuration Variables 

In the earliest work on the Cluster Variation Method, Kikuchi
1
 found the free energy for his 

system using an enthalpy term given as: 

                 . 

Equation 1-2 

The physical interpretation of Equation 1-2 is that a nearest-neighbor interaction between two 

like units (   and   ) is stabilizing, or has a negative coefficient, and interactions between unlike 

units (  ) is destabilizing, or positive.  

For our work, we will “shift” the interaction energy base so that the interactions between like 

units is zero, and the interaction between unlike units (  ),  , is constant. This allows us to 

rephrase the enthalpy equation as: 

       . 

Equation 1-3 

The free energy is then: 

                

Equation 1-4 

We begin by considering a one-dimensional system composed of a single zigzag chain, as shown 

in Figure 2.  

 

Figure 2: Single zigzag chain; the fraction variables yi are nearest-neighbors, and the wi are next-nearest-
neighbors, which are “proximal” to their neighbors across the upper and lower portions of the chain 

respectively. The fraction variables zi are comprised of any consecutive triplet. 

 

 

 

                                                 
1
 R. Kikuchi, Phys. Rev. 81, 988 (1951), and R. Kikuchi and S.G. Brush, J. Chem. Phys., 47, 195 (1967). 
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A one-dimensional system (single zigzag chain) of units has the reduced Helmholtz free energy: 

    
       

    

 
                     

 
                    

 
         

     
 
                    , 

Equation 1-5 

where   and   are Lagrange multipliers.  

Equation 1-5  makes use of certain relations that exist among the fraction (cluster) variables: 

For the   : 

         

               

         

For the   : 

         

         

         

For the   : 

                           

                           

Equation 1-6 

The normalization is: 

             
 
   . 

Equation 1-7 

We write the entropy of the system as the natural logarithm of the Grand Partition Function : 

      , 

Equation 1-8 

where , the degeneracy factor (Grand Partition Function) is the number of ways of constructing 

the system in such a way that the fraction variables take on certain values.  
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2 The 1-D (Zigzag) Approximation in the Cluster Variation Model  

2.1 CVM Entropy Using the 1-D (Zigzag) Approximation 

We consider first the entropy of a single zigzag chain, as shown previously.  

Viewing the zigzag chain as being composed of two horizontal rows, the number of ways of 

constructing this chain are given as:   

         
      

     
   

      
     

   

 

Equation 2-1 

where M is the number of lattice points in a row, and        refers to the juxtaposition of two 

rows
2
.  

When M is large, Stirling’s approximation
3
 can be used to express Equation 2-1 as: 

          
     

     
   

     
     

   

 

 

 

Equation 2-2 

We substitute from Equation 2-2 to Equation 1-8 and once again use Stirling’s approximation to 

obtain: 

                            
 
             

 
    , 

Equation 2-3 

where               . 

This is the entropy associated with a single zigzag chain.  

2.2 Free Energy Minimization in the Single ZigZag Chain 

For a one-dimensional system (single zigzag chain), the free energy is 

                                                 
2
 S. Miyatami, J. Phys. Soc., Japan, 34, 423 (1974).  

3
 Stirling’s approximation is given as: N! = N ln(N) - N 
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Equation 2-4 

where   and   are Lagrange multipliers.  

Taking the derivative of      with respect to the six configuration variables   , and setting each 

derivative equal to zero yields the following six equations, presented in detail in Appendix A: 

        

           
            

       
          

       
         

           
             

        

Equation 2-5 

where         , and   can be shown to be (for chemical systems) the chemical potential.  

For the system where           and    , Equation 2-5 and Equation 1-6 can be solved 

for the fraction variables    and   . The calculations, briefly summarized in the following 

paragraphs, are presented in more detail in Appendix B. 

Let        , and        . Then 

    
        

        
 

or 

     

Equation 2-6 

and 

       

Equation 2-7 
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and 

                 

Equation 2-8 

and 

                 

Equation 2-9 

We have an analytic solution for the full set of fraction variables only at          , which is 

      

      

      

      

      

          

          

Equation 2-10 

and the remaining fraction variables are readily obtained.  

3 Analytic Solution for x1 = x2 = 0.5 

When allowed to stabilize, the system comes to equilibrium at free energy minima, where the 

free energy equation involves both an interaction energy between terms and also an entropy term 

that includes the cluster variables. This computation addresses a system composed of a single 

zigzag chain.
4
  

I have computed an analytic solution for representing one of the cluster variables, z3, as a 

function of the reduced interaction energy term:      . From this, the remaining cluster 

variables are found as functions of h.  

                                                 
4
 The discussion of the analytic solution in Section 4 is taken from a blogpost written by A.J. Maren on Dec. 8, 

2008, Analytic Single-Point Solution for the Cluster Variation Method Variables at x1=x2=0.5,  

http://www.aliannajmaren.com/2011/12/08/analytic-single-point-solution-for-cluster-variation-method-variables-at-

x1x20-5/ , accessed March 12, 2014.  

http://www.aliannajmaren.com/2011/12/08/analytic-single-point-solution-for-cluster-variation-method-variables-at-x1x20-5/
http://www.aliannajmaren.com/2011/12/08/analytic-single-point-solution-for-cluster-variation-method-variables-at-x1x20-5/
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Figure 3: Results for three configuration variables, z3, z1, & y2. Values for h*10 are plotted along the x-axis. 

 

The point on this graph where h=1 (the x-axis is 10) corresponds to        . Effectively, 

beta*epsilon => 0. This is the case where either the interaction energy (epsilon) is very small, or 

the temperature is very large. Either way, we would expect – at this point – the most 

“disordered” state. The cluster variables should all achieve their nominal distributions; 

z1=z3=0.125, and y2=0.25. This is precisely what we observe.  

Consider the case of a positive interaction energy between unlike units (the A-B pairwise 

combination). The positive interaction energy ( >0) then suggests that a preponderance of A-B 

pairs (y2) would destabilize the system. We would expect that as   increases as a positive value, 

that we would minimize y2, and also see small values for those triplets that involve non-similar 

pair combinations. That is, the A-B-A triplet, or z3, approaches zero. We observe this on the RHS 

of the above graph. This is the case where as         moves into the positive range (0-3), we 

see that y2 and z3 fall towards zero. In particular, z3 becomes very small. Correspondingly, this is 

also the situation in which z1 = z6 becomes large; we see z1 taking on values > 0.4 when h > 2.9.  

This is the realm of creating a highly structured system where large “domains” of like units mass 

together. These large domains (comprised of overlapping A-A-A and B-B-B triplets) stagger 

against each other, with relatively few instances of “islands” (e.g., the A-B-A and B-A-B 

triplets.)  

Naturally, this approach – using a “reduced energy term” of   , where   = 1/(kT), does not tell 

us whether we are simply increasing the interaction energy or reducing the temperature; they 
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amount to the same thing. Both give the same resulting value for h, and it is the effect of h that 

we are interested in when we map the CVM variables and (ultimately) the CVM phase space.  

At the LHS of the preceding graph, we have the case where         is small (0.1 – 1). These 

small values mean that we are taking the exponent of a negative number; the interaction energy 

between two unlike units (A-B) is negative. This means that we stabilize the system through 

providing a different kind of structure; one which emphasizes alternate units, e.g. A-B-A-B …  

This is precisely what we observe. The pairwise combination y2 (A-B) actually increases slightly 

beyond its nominal expectation (when there is no interaction energy), and goes above 0.25, 

notably when h is in the range of 0.1 and smaller. Also, as expected, the value for z1 (A-A-A 

triplets) also drops towards zero – triplets of like units are suppressed when the interaction 

energy between units is positive.  

Somewhat surprisingly, z3 (A-B-A triplets) also decreases as h approaches 0.1. This means that 

the increase to above-nominal distributions for the CVM variable goes to z2 (A-A-B). Given that 

this is an even distribution of A and B units (x1 = x2 = 0.5), another way to think of the far LHS 

is when the temperature is very large. (We then have the exponent of a negative interaction 

energy over a large temperature, and can think of the increased temperature as producing greater 

“disorder” in the system – moving us away from the highly structured A-B-A-B-A order that 

would otherwise exist if y2 (A-B) predominated with no other influence. 

4 Discussion 

The Cluster Variation Method is gaining importance in graph theory, and as a means of 

computing stable states in belief propagation networks. See extensive discussions by Pelizzola 

and by Yedidia, Freeman, and Weiss, cited in the Research Bibliography.  
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APPENDIX A: 1-D ZIGZAG CHAIN – PRELIMINARY CONFIGURATION VARIABLE 

EQUATIONS (X1=X2=0.5)  

This Appendix presents the details of the results given in Section 2, recapitulated as:  

        

           
            

       
          

       
         

           
             

        

Replicate Equation 2-5 (from main body of text) 

We find these relationships by differentiating the free energy expression G1-D with respect to 

each of the cluster variables and setting the result to zero.  

We begin with the free energy expression for the 1-D Cluster Variation Method (CVM), where 

the enthalpy is defined as an interaction energy only between unlike units, that is, H=f(y2).  

For a one-dimensional system (single zigzag chain), the free energy is 

     

 
                          

 

   

           

 

   

          

 

   

                 

Replicate Equation 2-4 (from main body of text) 

where   and   are Lagrange multipliers.  

We now find the expressions for each of the cluster variables zi.  

Our first step is to find the dependence of G1-D on z1.  

  
     

   
 

 

   
      

 

   

           

 

   

           

Appendix A: Equation 1 

We find the following:  
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or 

      

  
       

  

  
 

Appendix A: Equation 2 

We use the equivalence relations introduced in Section 1.2 for the   : 

         

               

         

Replicate portion of Equation 2.6  

The only dependency from the yi on z1 is with y1. Thus, recalling that the degeneracy factors 

       , we have 

  
     

   
    

 

   
       

 

   
           

or 

  
     

   
          

   

   
       

   

   
     

or 

  
     

   
          

   

   
            

or 

  
     

   
                      

Appendix A: Equation 3 

Thus we have 
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or 

       
  

 
        

Appendix A: Equation 4 

Taking the exponent of both sides, we have 

      
   

 
     

Appendix A: Equation 5 

Or, setting        
   

 
 , we have 

       

Appendix A: Equation 6 

Now, we compute the dependence of G1-D on z2.  

We recall that the degeneracy factors are         and        , so that we have 

  
     

   

 
   

   

              
 

   
      

 

   

           

 

   

       

   
       

   
   

      

   
 

Appendix A: Equation 7 

Simplifying, we have 

     
  

   

                 
  

   

                 

Appendix A: Equation 8 

In particular, both here and throughout all this work, we use the following relationship: 

                

Appendix A: Equation 9 
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Thus, we find that  

  

   

                 
 

   

              
 

   

                     

Appendix A: Equation 10 

We substitute this into Appendix A: Equation 8 to obtain 

                                    

or 

  
  

 
                             

Appendix A: Equation 11 

Rearranging terms, we have 

                         
  

 
    

Appendix A: Equation 12 

We take the exponent of both sides to obtain 

  
                   

  

 
          

Appendix A: Equation 13 

We take the square root of both sides to obtain 

       
  

 
        

        
  

 
         

Appendix A: Equation 14 

As before, we let        
   

 
 , to obtain  

          
        

  

 
         

Our third step in this Appendix is to compute the dependence of G1-D on z3.  

We recall that the degeneracy factors are               and        , so that we 

have 
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Appendix A: Equation 15 

Doing the most obvious simplifications, we have 

     
 

   
      

 

   

           

 

   

              

Appendix A: Equation 16 

From Equation 1-6, we recognize that the only dependence of the yi on z3 is with y2. Specifically, 

we had previously identified that                 (Appendix A: Equation 9).  

This gives us 

     
  

   

          
  

   

               

or 

            
 

   

                       

or 

                            

or 

  
  

 
                

  

 
    

Appendix A: Equation 17 

We can reorganize this as 

       
  

 
        

  

 
    

Appendix A: Equation 18 

We take the exponent of both sides to obtain 
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or  

           
  

 
           

Appendix A: Equation 19 

Computations for the configuration variables z4, z5, and z6 are similar to those just done, yielding 

the final set of equations given as Equation 2-5.    
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APPENDIX B: 1-D ZIGZAG CHAIN ANALYTIC SOLUTION (X1=X2=0.5)  

This Appendix takes the results given in Section 3, recapitulated below, to find the definitions 

for the cluster variables in terms of the energy interaction parameter         . We begin with 

the results found in Appendix A:  

        

           
            

       
          

       
         

           
             

        

Appendix B: Replicate Equation 2-5 (from main body of text) 

 

Let        , and    . Then  

        

           
      

        
  

        
  

           
      

        

Appendix B: Equation 1 

Since       at      , it follows that when at      , we also have 

      

      

      

Appendix B: Equation 2 
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Let        . Then we divide the first equation by the third in the set of Eqns. B-1: 

   

   
 

  

     
 

which gives 

           
     

Appendix B: Equation 3 

We also multiply the third equation in the set of Eqns. A-1 by the term     , which is identical 

with   , to yield 

     
       

   

Appendix B: Equation 4 

Refer now to the second equation of set B-1: 

           
      

Appendix B: Previous Equation 1; 2
nd

 equation of set 

We square both sides to obtain 

  
         

   

Appendix B: Equation 5 

We can substitute this into Eqn. B-4 and divide through both sides by   to obtain 

       
  

Appendix B: Equation 6 

We recall from Equation 1-6 that:  

                     

Also, since at     

 
, we have      , we rewrite the previous equation as 

   
 

 
                 

Appendix B: Equation 7 

Then we can write 
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Appendix B: Equation 8 

Divide through by 2, and square both sides to obtain 

  
  

 

  
           

  

Appendix B: Equation 9 

Substitute this into B-6 to obtain 

       
  

 

  
           

  

Appendix B: Equation 10 

Now, divide through by   
  to obtain 

  

  
 

 

  
 
 

  
 

   

  
   

 

 

Appendix B: Equation 11 

We had previously defined:        . We now substitute this into Eqn. B-11 to obtain 

  
 

  
 
 

  
      

 

 

Appendix B: Equation 12 

We now solve for   in terms of   . The first step is to multiple through by 16 and to expand the 

terms on the RHS. 

     
 

  
      

 

 

or 

     
 

  
 
 

  
 

  

                 

or 
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or 

    
 

  
  

      

  
         

Appendix B: Equation 13 

Collect terms to obtain a quadratic in        

 
 

  
 
 

       
 

  
                

Appendix B: Equation 14 

We now solve this quadratic to obtain an expression for       , using the quadratic formula:  

  
           

  
 

 Apply this to:  

 
 

  
 
 

       
 

  
                

to obtain 

 

  
  

 

 
                                        

or 

 

  
         

 

 
                               

or 

 

  
         

 

 
                                 

or 

 

  
         

 

 
             

or 
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Appendix B: Equation 15 

We recall that      is close to 8. (   itself, being a triplet distribution variable, occurs about 1/8 

of the time.)  Also, we defined:        , and    occurs with about the same frequency as    

(especially when at      ), so that s is approximately 1.  

Thus, inserting approximate values into Eqn. B-15, we obtain 

               

Appendix B: Equation 16 

which we can rewrite as 

           

Appendix B: Equation 17 

which means that we must take the positive term on the RHS. This gives us 

 

  
                

Appendix B: Equation 18 

This gives an expression for      in terms of:        . We will use this as a substitution term 

to determine h. To do this, we begin by getting expressions for   ,   , and   .  

We recall Eqn. B-8:  

    
 

 
       

or 

   
 

 
            

Appendix B: Equation 19 
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We further have from Equation 1-6: 

         

               

         

Appendix B: Replicate Eqn. 2-6 (partial set) 

Since at      , we also have (see Eqn. B-2)      , we can rewrite the equation for    as 

               

or 

   
 

 
               

or 

   
 

 
            

Appendix B: Equation 20 

Further, at             , we can write 

          
 

 
 

 

 
            

or 

   
 

 
            

Appendix B: Equation 21 

Refer now to Appendix B: Equation 3 which gave: 

           
     

Appendix B: Equation 3 (replicate) 

which we can rewrite to give us h
2
:  

          

Appendix B: Equation 22 
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We make substitutions using Eqns. B-20 and B-21 to yield  

    
 
 
           

 
 
           

  
         

         
 

Appendix B: Equation 23 

Divide through the top and bottom of the RHS now by    and recall that         to yield  

    

 
  

     

 
  

     
 

Appendix B: Equation 24 

Now, recall that we have obtained an expression for      in terms of:        . 

 

  
                

Appendix B: Equation 18 (replicate) 

Substitute from Eqn. B-18 into B-24 to obtain:  

    
                   

                   
 

Appendix B: Equation 25 

We combine terms and divide through by constants to give  

    
        

        
 

or 

    
      

            
 

or 
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or 

     

Appendix B: Equation 26 

This gave us an expression for s in terms of h. We can substitute this into Eqn. B-18.  

 

  
                

Appendix B: Equation B-18 (replicate) 

Substituting from Eqn. B-26 into B-18, we get 

 

  
                  

or 

 

  
             

or 

 

  
          

or 

   
 

        
 

Appendix B: Equation 27 

Further,  

            

Appendix B: Replicate Eqn. B-3 

and 

                 

Appendix B: Replicate Equation 2-8 

And 
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Appendix B: Replicate Equation 2-9 (from main body of text) 

We have an analytic solution for the full set of fraction variables only at          , which is 

      

      

      

      

      

          

          

Appendix B: Replicate  Equation 2-10 (from main body of text) 

and the remaining fraction variables are readily obtained.
5
  

 

                                                 
5
 Details of the analytic solution were originally published in: Maren, A.J. (1981). Theoretical 

Models for Solid State Phase Transitions, Ph.D. Dissertation, Arizona State University. 

These results are revised and updated.  

 


