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9.1 Introduction to Energy-Based Neural Net-

works

One of the most important aspects of advanced machine learning / deep
learning studies is the shift into a physics-based approach; specifically into
statistical mechanics. Statistical mechanics, combined with Bayesian proba-
bility theory and also with neural network methods, contribute to the central
themes of machine learning, as illustrated in the following Figure 9.1.

Figure 9.1: Machine learning algorithms are at the confluence of statistical
mechanics, probability and information theory, and neural networks.

One of the most interesting, distinctive, and even arcane aspects about
advanced neural networks and machine learning algorithms is that they use
two very different forms of probability-thinking. These two different methods,
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coming from statstical mechanics and Bayesian probabilities (respectively)
are hugely different ways of thinking about the likelihood of whether or not
something will happen.

Statistical mechanics, a realm of theoretical physics, is used in neural
networks largely as an allegory; as a model created in one field that has
been (very usefully) applied to another. It’s almost like using physics as
story-telling. The notion that these methods could be successfully used is so
extreme that its almost shocking that these methods could find a new home
in neural networks and deep learning.

The notions of statistical mechanics are central to the learning methods
for restricted Boltzmann machines (RBMs). A restricted Boltzmann machine
learns using a very different underlying approach than that used by stochastic
gradient descent implementations (e.g., backpropagation). This means that
RBMs can have multi-layered architectures and learn to distinguish between
more complex patterns, overcoming the limitations of simple Multilayer
Perceptrons (MLPs), as we previously discussed.

Statistical mechanics deals with the probabilities of occurrence of small
units that can be distinguished from each other only by their energy states.
In contrast, Bayesian probabilities provide a remarkably different way of
thinking about the probabilities with which things can happen. Together,
these two probability-oriented methods provide the foundations for advanced
machine learning methods.

Now that we’ve identified the importance of both statistical mechanics
and Bayesian methods, we will restrict our attention (for this chapter and
the immediately-following ones) to statistical mechanics and its foundational
relationship with neural networks. We’ll pick up on the full confluence of
statistical mechanics and Bayesian methods later, when we address more
advanced topics.

The first time that the role of statistical mechanics became well-known in
neural networks was when John Hopfield presented his work in 1982 [1]. His
work drew on some similar lines of thinking developed by William Little in
1974 [2].

This chapter presents some of the key concepts in statistical mechanics;
sufficient to understand the subject of some classic papers: Hopfield’s original
work (introducing what became known as the Hopfield network), and a few
key works on the Boltzmann machine, developed by Geoffrey Hinton and
colleagues.
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9.2 Introduction to the Hopfield Neural Net-

work and the Boltzmann Machine

The Hopfield neural network and its immediates successor, the Boltzmann
machine (in both original and restricted forms) are instances of energy-based
neural networks. They each achieve their desired connection weight values by
minimizing an energy equation.

At first glance, the two networks do not seem to be structurally the same.
However, they have a great deal in common, as we’ll see shortly.

The following Figure 9.2 illustrates both the Hopfield and the Boltzmann
machine neural networks, so that we can easily compare the structures. The
Hopfield neural network is shown on the left-hand-side, and the Boltzmann
machine (in two different configurations, but still the same network) is shown
in the center and right-hand-side graphs.

Figure 9.2: Illustration of the Hopfield and Boltzmann machine neural network
architectures; the Boltzmann machine is essentially a Hopfleld neural network
with certain connections removed.

To understand the restricted Boltzmann machine (RBM), which is central
to current deep learning theory, it helps to first understand the simple (non-
restricted) Boltzmann machine. And to understand the simple Boltzmann
machine, it helps us to first understand the Hopfield neural network. Thus,
we’ll briefly examine the Hopfield neural network.
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The Hopfield neural network, as it came to be known, was immediately
interesting to the newly-forming neural networks community. Hopfield net-
works can be used for different tasks; one of the most interesting was as
an optimization method. However, its first and most fundamental applica-
tion was as an autoencoder. An autoencoder is a device that can remember
previously-stored patterns, if triggered to their recall by presentation of a
partial or noisy version of an original pattern.

Despite the Hopfield network’s interesting ability to reconstruct stored
patterns, it had a severe memory limitation. It could only learn a number of
patterns that was about 15% of the total number of nodes in the system. So
if, for example, a Hopfield network was created with 20 nodes (or neurons,
or units), then it could learn and retrieve only three distinct patterns. This
memory restriction caused many people to lose interest in this network.

Geoffrey Hinton, who was a cognitive scientist, studied the physics equa-
tions used by John Hopfield. He came up with a novel insight into how
the structure of the Hopfield neural network could be rearranged. This led
to creation of the Boltzmann machine, and then the restricted Boltzmann
machine (RBM), which has been the cornerstone of of deep learning.

So, in order to understand the restricted Boltzmann machine, we’re going
to start at the beginning - with the equations and structure of the Hopfield
neural network. Once we understand that, it’s a straightforward, natural,
and intuitive step to understand Boltzmann machines - both in their original
and restricted forms. This then paves the way for us to understand and use
the wide range of methods involving energy-based systems in neural networks
and machine learning.

9.3 The Hopfield Neural Network - Energy

Equation and Structure

The Hopfield neural network, most often simply called the Hopfield network,
is a beautiful instance of how form and function perfectly reflect each
other. The function of this network is expressed in its energy equation. This
energy equation is perfectly mirrored in its form, or the structure of this
network.

We’ll begin by looking at the energy equation, as presented by John
Hopfield in his classic 1982 paper, shown in the following Figure 9.3.
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Notice that there is just one energy equation here, given as Eqn. [7] in
the Hopfield 1982 paper. The second equation, Eqn. [8], is an energy update
equation; it describes how the energy is changed as the weight update rule is
applied. Thus, our focus is on that first Eqn. [7], as illustrated in Figure 9.3.

Figure 9.3: Extract from J. Hopfield (1982, April). “Neural Networks and
Physical Systems with Emergent Collective Computational Abilities,” Proc.
Natl. Acad. Sci. U.S.A., 79 : 2554-2558.

The first of the two equations shown in Figure 9.3 defines the overall
energy of the system, and the second shows what happens to the overall
energy when we flip any given node from 1 to 0, or vice versa. We will focus
on the first equation here, and defer the second equation to a later chapter.

Before we interpret the first equation (Eqn. [7]) in Hopfield’s paper, we’re
going to briefly note where he says “This case is isomorphic with an Ising
model ...” This is a reference to statistical mechanics, which we’ll address
starting with the next chapter. An Ising model is a classic model in statistical
mechanics, and is very relevant to our work in energy-based neural networks.
We could say that the entirety of energy-based neural networks is built on a
foundation that uses the Ising model as a starting point. We’ll follow this
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line of thought in the next few chapters. For now, we focus our attention on
the first equation, Eqn. [7] in Hopfield’s 1982 paper, as shown in Figure 9.3.

For readability, the equation in Figure 9.3 is reproduced here as Eqn. 9.1.

E = −1

2

∑∑
i ̸=j

Ti,jViVj. (9.1)

Our first step in understanding this equation is to interpret the terms Vi,
Vj, and Tij.We refer to Hopfield’s original 1982 paper, where he states:

“The processing devices will be called neurons. Each neuron i has two
states like those of McCulloch and Pitts (Author’s note: the reference citation
is updated here for the reader’s benefit, see [3]): Vi = 0 (“not firing”) and
Vi = 1 (“firing at maximum rate”). When neuron i has a connection made to
it from j, the strength of connection is defined as Tij . (Nonconnected neurons
have Tij ≡ 0.)”

Let’s examine both the energy equation for the Hopfield neural network,
and the illustration of its structure. For ease in visualizing the Hopfield neural
network, the depiction of it from from Figure 9.2 is presented here at larger
scale, as Figure 9.4.

Figure 9.4: The Hopfield neural network archtiecture; from Figure 9.2.
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From Fig. 9.4, we see that every node is connected to each other node,
but not to itself.

In the Hopfield neural network, we have connections between each of the
different nodes. The notion of having some nodes be “visible” and other
nodes “hidden” is not present in the Hopfield neural network; the notion
of having “hidden” nodes was a innovation introduced a few years later by
Geoffrey Hinton, and was essential to the notion of the Boltzmann machine.
Essentially, all nodes in a Hopfield network are “visible.”

The energy equation for the Hopfield neural network addresses all possible
combinations of nodes in the network; this is why we see the double summation
sign in Eqn. 9.1. This equation has the values for two different nodes in it; we
see both Vi and Vj. We know that there are no connections from any given
node back to itself, because that would be a connection between Vi and Vi;
for example node 1 connecting back to 1. The equation explicitly states that
we don’t have these connections, because we see i ̸= j as the subscript under
the two summation signs. As we refer back to Fig. 9.4, we see this is the case;
each node connects to each other node, but there are no “loops” connecting
a node back to itself.

There’s just two more things that we can glean about the structure and
operation of the Hopfield neural network from its energy equation. First, we
see that there is a multiplying factor of −1/2 in front of the summations. Also,
from Hopfield’s original work, from which we saw an excerpt in Fig. 9.3, we
read “Consider the special case Ti,j = Tj,i ...” This means that the connection
strength between any two nodes is the same, whether we read it from the
first node to the second or vice versa. For example, the connection strength
going from node 2 to node 3 is the same as the connection strength going
from node 3 back to node 2.

The way that the equation is set up, we count each direction of connections.
For example, we separately count the interactions between node 2 to node 3
(T2,3V2V3) and between node 3 to node 2 (T3,2V3V2). Because we’ve essentially
counted the same thing twice, we need to divide by two; this is why we have
the normalizing factor of 1/2 in front of the double summation.

The negative sign is introduced so that we can have positive values for
the connection parameter Ti,j. Remember, our algorithms are going to seek
a minimum in the energy equation. This is similar to how, when we did
stochastic gradient descent using the backpropagation algorithm, we were
seeking a minimum value. Our values for Ti,j are not constrained to be
positive, but putting the negative sign in front of the double summation
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energy term allows them to be positive more often than not, and the system
will still (likely) come to a minimum state as we apply our energy-minimization
algorithm.

Summing up what we’ve learned so far, we note that the Hopfield neural
network, which is the predecessor neural network for the Boltzmann machine,
has the following properties:

1. The network is constructed from a set of nodes, all of which are “visible,”

2. Each node connects to each other node, but not back to itself,

3. The nodes in this system are binary ; meaning that they can each be in
one of two states; “on” or “off;” for both the Hopfield and the Boltzmann
machine networks, these values are (1, 0),

4. The connections between nodes in this system are symmetric, so that
Ti,j = Tj,i, and

5. The stable state of this network is governed by an energy equation, and
the training algorithm adapts the connection parameter Ti,j between
each pair of nodes (Vi and Vj) in order to achieve a total minimum
value.

We’re not going to address the training algorithm right now (the energy-
minimizing algorithm), as the purpose of this section was just to make a
connection between the formalism of the energy equation and the structure
of the Hopfield neural network. We’ve seen that, for the Hopfield neural
network, form equals function , in that the set of fully-connected nodes
(without self-connection) is illustrated in both Fig. 9.4 and Eqn. 9.1.

The important thing that we’ve done here has been to lay a foundation,
because our next step is to similarly understand the correspondence between
the energy equation for the Boltzmann machine and the structure and nature
of the Boltzmann machine neural network. That is the goal of the next
section.

9.4 The Boltzmann Machine - An Energy-

Based Neural Network

We begin by taking a look, in Figure 9.5, at an equation used by Geoffrey
Hinton and colleagues to describe deep learning methods. The particular
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source for this figure is from Hinton et al. in a 2012 paper for acoustic
modeling [4].

Figure 9.5: Extract from Hinton et al. (2012, November), Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups, IEEE Signal Processing Magazine, 29, pp 82-97.

For readability, the equation shown in Figure 9.5 is reproduced as Eqn. 9.2.

E(v, h) = −
∑

iϵvisible

aivi −
∑

jϵhidden

bjhj −
∑
i,j

vihjwi,j (9.2)

Eqn. 9.2 describes the energy of a simple neural network as the linear
combination of three negative terms. These three terms tell us a lot about
the nature and structure of the network that is identified by Eqn. 9.2.

9.4.1 The Boltzmann Machine Energy Equation: A
Quick Interpretation

Even if we haven’t studied the physics behind Eqn. 9.2, we can deduce a lot
just by looking at it. Only the third term deals with connections between
nodes, because only the third term has a double summation sign. (Note: the
reference to a “double summation” is evident, because we see two indices
underneath the summation sign. This tells us that the authors have condensed
the notation; one summation sign with two indices underneath it means the
same thing as two summation signs, each with their own index.)

This double summation is followed by a constant (the connection weight)
that has two subscripts (meaning that we’re looking at a connection weight
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between two nodes). The other two elements of this term are vi and hj; one
refers to one kind of node, and the other refers to a different kind of node.
Thus, we know that all the processes involving training connection weights
will center on this particular term.

We also know that the processes involving single nodes are separated
according to node type; this is really just a bit of a formality, because the
two remaining terms are similar. They each identify that a single parameter
(ai or bj) multiplies the “energy” of a single node (a visible or hidden node,
respectively).

Because we know that in a Multilayer Perceptron (MLP) architecture, we
have bias terms multiplying the activation of the hidden and output nodes,
we can make a correspondence. The ai and bj parameters function as bias
scalars, or multiplying factors.

Both “input” and “output” nodes are visible; that is, they belong to the
pool of vi nodes. If we wanted to, we could make the bias values for the input
nodes to be set equal to one. However, the formalism expressed in Eqn. 9.2
makes it clear that we have the flexiblity to do otherwise.

9.4.2 The Boltzmann machine evolved from the Hop-
field neural network

Eqn. 9.2, and the thinking behind it, is an evolution and a step forward
from the idea encapsulated in the Hopfield neural network [1], which we just
discussed in the previous section. Each of the first two terms involves a scalar
multiplying a node activation; vi or hj. The third term is the only one in
Eqn. 9.2 that has the energies of two different nodes involved; both vi and
hj are involved.

To understand this evolution, let’s compare the third term in Eqn. 9.2
with the Hopfield energy equation. This third term from Eqn. 9.2 is

E(v, h)term3 = −
∑
i,j

vihjwi,j.

In this equation, vi refers to the energy of the visible node i, and hj refers
to the energy of the hidden node j. The third element of this term is wi,j,
which refers to the connection weight between node i and node j.

For comparison, the Hopfield energy equation is
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E = −1

2

∑∑
i ̸=j

Ti,jViVj.

We might be tempted to say that these are the same equation, with only
some small differences in the notation. And really, these are two different
ways of expressing the same equation - with one very important difference
in the two forms.

The equations both have negative signs in front of them. As we previously
discussed, this lets us use positive values for (most of) the connection weights,
expressed in the Hinton equation as wi,j and in the Hopfield equation as Ti,j.

There is a factor of 1/2 in the Hopfield equation; this can be easily
subsumed into the connection weights themselves. (If nothing else were a
factor, we might say that the values for Ti,j would be about one-half the
values for wi,j.)

The summations are essentially the same; the double subscript indicates
that there are two summations going on, whether or not we show the capital
sigma summation sign twice or only once.

The real difference is a bit more subtle. Note that in the Hopfield
equation, the two nodes involved in each summation step are represented as
ViVj . These are not only the same kind of node; they’re drawn from the same
pool of nodes. This is why Hopfield had to be careful to specify i ̸= j, so that
the energy equation did not include a connection from a node back to itself.

In contrast, the nodes in the Hinton et al. equation are of two
distinct kinds; one represented as vi and the other as hj. These are the
same kind of node, but they are separated into two distinct pools, as shown
in the following Figure 9.6.

Thus, the important difference between the Hopfield neural network and
the Boltzmann machine (whether original or restricted) is that there is only
one kind of node in the Hopfield neural network, and there are two kinds of
nodes (“visible” and “hidden”) in the Boltzmann machine.

The introduction of these hidden nodes for the Boltzmann machine (for
both the original and restricted versions) was a huge breakthrough. These
hidden nodes are the latent variables that characterize the features defining
the patterns that the network learns.

This is important. When we train a Hopfield neural network, we use
training data that includes all the patterns - but there are no specific “fea-
ture” nodes. The network never learns the features that characterize and
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Figure 9.6: Comparing the structures of two neural networks: (a) the Hopfield
neural network, and (b) the (simple) Boltzmann machine.

differentiate between different kinds of patterns.

In contrast, when we train a Boltzmann machine (original or restricted),
we present training data. This training data may include pattern class identi-
fication; when we do this, we’re using the Boltzmann machine analogously to
an MLP. We show this in the following Figure 9.7.

Thus, the big distinction between Hopfield neural networks and Boltzmann
machines is that in the Hopfield neural network, there are no hidden nodes,
and the network does not learn “features” describing the patterns. In contrast,
when we present training data to the Boltzmann machine, it has to figure out
appropriate values for its hidden nodes. The values for hidden nodes are not
specified in the training and testing process; rather, these values are learned
over time.

9.5 Comparing the Boltzmann Machine to

the Multilayer Perceptron

There are two levels at which we can compare a restricted Boltzmann machine
(RBM) with a Multilayer Perceptron (MLP). One addresses their structure,
we call this the meso-structure. The other is to compare how their nodes
work internally; we call this the micro-structure.
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Figure 9.7: The restricted Boltzmann machine can be drawn two ways; (a) the
restricted Boltzmann machine can be drawn Hopfield-style, with an emphasis
on separating the visible and hidden nodes (with a potential distinction
between visible “input” and “output” nodes), and (b) as an MLP. The “input”
and “output” nodes in the MLP-style drawing are both visible.
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9.5.1 Comparing the Mesostructure of Boltzmann Ma-
chines with Multilayer Perceptrons

We can draw a restricted Boltzmann machine (RBM) so that it looks like
a Multilayer Perceptron (MLP). This means that we can say that their
structures are isomorphic. This is shown in Figure 9.8.

Figure 9.8: (Left) the Multilayer Perceptron, (center) the Boltzmann machine,
and (right) the restricted Boltzmann machine; the structures of the Multilayer
Perceptron (left) and the restricted Boltzmann machine (right) are isomorphic.

9.5.2 Comparing the Microstructure of Boltzmann Ma-
chines with Multilayer Perceptrons

Just because we can diagram a restricted Boltzmann machine so that it looks
like a Multi-Layer Perceptron (MLP), the values of both the visible and
hidden nodes in a Boltzmann machine are different from those in an MLP.

In a classic MLP, the activation of a hidden or output node is found by
applying a transfer function to the summed inputs to that respective node.
The transfer function is typically one that has is smoothly differentiable.
(We’re ignoring, for now, non-smoothly differentiable transfer functions such
as ReLUs.)

As we recall from a previous chapter, the transfer function serves multiple
purposes. It scales the output of a given node from what could potentially
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range from minus to positive infinty, to a range between 0 and 1. (Or between
-1 and 1, depending on the function of choice.) The important point for us
to keep in mind, as we do our comparision between MLP and Boltzmann
machine architectures, is that the output of both hidden and output nodes of
the MLP can take on continuous values between specific ranges.

In contrast, the values of both the visible and hidden nodes in a Boltzmann
machine are either 0 and 1. We know this, because the description given by
Hinton et al. [4], as we can read in Figure 9.5, says “where vi , hj are the
binary states of visible unit i and hidden unit j.” The binary states allowed
are (1,−1) for a Hopfield neural network and (1, 0) for a Boltzmann machine.

This is very related to how the training algorithms work in the two different
cases (MLP vs. RBM). With a stochastic gradient descent, a key feature is
that we need to identify the gradient of the node’s activation, as a function of
summed and weighted inputs. With a Boltzmann machine, we don’t need a
gradient; in fact, that would make our training algorithm more cumbersome.

This distinction is, of course, a broad and sweeping generalization. There
are exceptions to this, as there are to every rule. However, this distinction
broadly separates these two fundamentally different neural network classes.

We will discuss training, using the Contrastive Divergence algorithm
developed by Hinton [5, 6] in a subsequent chapter.
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