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11.1 Introduction and Overview

Many of us know of major universal laws, such as the law of gravity. Equally
important, and governing how our universe works, is the law of free energy
minimization.

Free energy is important; the reason that we may not be as familiar with
it as we are with gravity is that it is the free energy of a system reflects a
balance or interplay between two forces.

This is not the first time that we’ve encountered a universal law that
reflects a balance between two forces. When the earth or any of our other
planets are in a stable orbit around a sun, or when a spacecraft reaches orbital
velocity and settles into a stable orbit around the earth, both the planets and
the spacecraft are obeying a balance between two forces.

Figure 11.1: A spaceship stays in a stable orbit due to the balance between
inward/outward forces (centripetal and centrifugal) together with a linear
directional force (inertia) that moves the spaceship in a straight line tangen-
tially away from the center of gravity.

The first of these is centripetal force, which is the gravity of the sun pulling
the planets towards itself, or the gravity of earth pulling a spacecraft towards
itself. The second force is the inertia of each moving object (the planet or
the spacecraft). Newton described this as one of the Laws of Motion, saying
that a body at rest will stay at rest, and a body in motion (in the absence of
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some other force) will continue in motion, in the same direction and with the
same constant velocity.

When we say that a spacecraft has “achieved orbital velocity,” what we’re
saying is that the velocity of spacecraft (moving tangentially to an orbit
around the earth) is sufficient to match the centripetal (gravitational) force
of the earth pulling the spacecraft towards itself. Because the two forces are
balanced, we have a stable state: the spacecraft continues in its orbit, without
needing further acceleration (and expenditure of fuel).

Similarly, the law of free energy minimization provides stability, balance,
and order in our universe. When the free energy of a system is minimized, we
have a stable state, just as we have a stable orbit when gravity and motion
are in balance.

The two component factors of free energy are enthalpy and entropy. We
discussed entropy in the previous chapter, and will introduce the role of
enthalpy here.

11.2 The free energy equation

The notion of free energy, which underlies a great deal of thermodynamics, is
also important in neural networks, particularly those used in deep learning.
Early neural networks, such as the Hopfield network and the Boltmann
machine, relied on a free energy minimization approach.

We addressed these two neural networks, doing a contrast-and-compare
of both their energy equations and their architectures, in a prior chapter.
Now, we look at them again, this time probing deeper into how they are each
governed by a free energy equation.

Even if we ignored these two networks (the Hopfield and the simple Boltz-
mann machine), we can’t ignore the restricted Boltzmann machine (RBM),
which is the heart and soul of deep learning. The RBM is a simplification
(a restriction) on the simple Boltzmann machine.

Thus, the best way in which we can understandi the RBM is to understand
the simple Boltzmann machine and its predecessor, the Hopfield neural
network. This will give us a solid basis for understanding RBMs. Further,
we’ll have put down a strong foundation for understanding deep neural
networks, which are created by stacking RBMs.

This chapter gives an altogether too-brief overview of free energy. Our
primary goal, for now, is simply to recognize a free energy equation
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when we see one .
A secondary goal - which may be just as important for us practically - is

to understand the notation used by various authors when they write the free
energy equation.

Very often, we can understand the mathematics and derivations very well,
but will get tripped up when we compare works by different authors (or even
the same authors, over time), when they write about the same subject - but
use different notation. This can cause a great deal of confusion.

Thus, we give particularattention to notation, as well as the actual formu-
lation of the free energy equation.

As we’ll observe, this is not as simple as it seems.
One challenge is that the free energy equation shows up in two

remarkably different forms. It’s a lot like recognizing that a specific
caterpillar corresponds with a certain specific butterfly. They look very
different, but they are two expressions of the same creature.

A second challenge is that there is a range of notation used for free
energy . As we observed in the previous chapter, the notation for entropy
could commonly be either an S or an H. For free energy, the notation can be
F (for free energy, not surprisingly), or H or A (for Helmholtz free energy),
or G (for Gibbs free energy).

These latter distinctions (Helmholtz vs. Gibbs) make a great deal of
difference in the world of physical chemistry, where pressure and volume
come into play. However, when we use free energy in the world of neural
networks or machine learning (including variational methods), we are dealing
with a reduced free energy, for which all the terms involving units of energy,
temperature, or numbers of units in the system have been divided out. This
leaves us with an equation that has no relation with the real, physical world.
It is an abstraction; an ideal.

In the realm of neural networks and machine learning, using a reduced
equation works well. Concepts such as the pressure or the volume of a system
are not relevant. As a result, terms involving changes in those (pressure
and/or temperature) variables drop out of the (reduced) free energy equation.

Occasionally, we (as readers) may come across authors who refer to
Helmholtz or Gibbs free energies. For our work (in neural networks and
machine learning), we can ignore those distinctions, and treat the Helmholtz
free energy and the Gibbs free energy as the same thing; they are all the same
“free energy” for our purposes.

Further, once the notion of free energy is fairly well understood, there are
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a number of specific models that are common and well-known to physicists.
These include the Ising model, together with its variants. One might read, for
example, about a Bethé-Peierls or a mean-field model. We will ignore these
variants in this treatment, and concentrate on the basics.

It is possible to derive the second form of the free energy equation (with
a little calculus and elbow grease) from the first. For now, we ask you to take
on faith that the two following equations mean the same thing.

The first formulation gives the free energy in terms of the energy of each
unit, as encapsulated in the partition function.

The Free Energy - first version (as
logarithm of the partition function:

F = −kβT ln(Z).

The most common way in which we see the free energy introduced in
a paper uses the expression just given, so that the free energy involves the
partition function.

Reading the First Version of the Free Energy
Equation:

The free energy is the negative of a constant (Boltz-
mann’s constant times temperature) times the
natural logarithm of the partition function, Z.

There is an entirely different way of expressing free energy; as the difference
between the enthalpy (or chemical potential, or ability to do work) minus the
temperature times the entropy.

This is a crucial equation as we start using (free) energy minimization
methods in machine learning. It means that the equilibrium, or minimal
free energy state, is reached as a balance between getting the lowest possible
energy (enthalpy) values while still maximizing entropy. This is a trade-off.

Eqn. 11.1 gives the second form of the free energy equation as
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The Free Energy - second version (as the
difference between enthalpy and

temperature times entropy):

F = U − TS, (11.1)

where U is the chemical potential, T is temperature and S is the entropy.

Reading the Second Version of the Free Energy
Equation:

The free energy the difference between the chemical
potential, U , and the temperature T times the entropy, S.

U , as mentioned previously, is the chemical potential, often defined as the
ability of the system to absorb or release energy during chemical reactions.
It can include a number of factors, most significantly (for our purposes) the
enthalpy, which is the energy associated with each unit. Since the “other
factors” do not come into play in machine learning, various authors may use
either the term chemical potential or enthalpy. They may use U or E or
H to express these terms, although U is generally reserved for the chemical
potential, while E or H more commonly refer to the enthalpy.

As mentioned earlier, various letters are used for different terms, depending
on the author’s whim and provenance, in the free energy equation. Thus,
we could see the Eqn. 11.1 show up as G = H − TS or even A = U − TH,
if the author wanted to be particularly confusing and substitute H (the
information-theory way of expressing entropy) for S (the physical chemist’s
way of expressing entropy).

While the authors will usually define their terms, they occasionally leave
interpretation up to their reader. Then, we have to infer what they mean
from context.

As we mentioned previously, when we use free energy for neural networks
or machine learning (including variational inference), we create a reduced free
energy equation. We do this by dividing-through by any and all terms that
have dimensions of energy and temperature, as well as the total number of
units in the system.(This latter step is because free energy, enthalpy, and
entropy are extensive properties - that is, they depend on the total number of
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units in the system. So, for example, the free energy (the ability to do work)
is greater in a steam engine than it is in a wood-burning stove, and is greater
in a wood-burning stove than it is in a candle flame. By dividing through by
the number of available units, we put all these systems (steam engine, stove,
and candle flame) on the same level. This lets us focus our attention on the
nature of the equation itself.

In this light, we will reduce our free energy equation and all the terms in
it.

This would normally give us an equation that we would write in the
following manner.

The Reduced Free Energy - we have
divided-through by all terms involving

units of energy or temperature, as well as
the total numbers of units.

F̄ = Ū − S̄, (11.2)

where F̄ is the reduced free energyl, Ū is the reduced chemical potential, S̄ is
the reduced entropy, and we have divided through by the temperature T .

Now, we take one more step with simplifying our notation, and instead
of putting the “bar” over our terms, we will use the original terms F , U ,
and S, with the understanding that we are now referring to reduced terms
- just with the simplified (“no-bar”) notation. This is the way in which we
will usually see the free energy equation in neural networks and variational
inference papers. This gives us the following (simplified) equation.

The Reduced Free Energy - we have
divided-through by all terms involving

units of energy or temperature, as well as
the total numbers of units, but are no
longer using the “bar” over the terms.
The reduced nature is understood from

here on.

F = U − S, (11.3)
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where F is now the reduced free energyl, U is now the reduced chemical
potential, and S is now the reduced entropy. The notion of temperature T is
no longer directly important in this equation; the influence of temperature is
absorbed into coefficients in the enthalpy term(s).

Now, we take one more step in the world of notation - we replace U with
H, and could (just as equivalently) use E. (Both are in common use in the
neural networks and machine learning literature.)

This means that we write the previous equation in the following form

The Reduced Free Energy - we have
replaced U with E.

F = H − S, (11.4)

where F is the reduced free energy, H is the reduced enthalpy (we are now
using that term instead of chemical potential), and S is the reduced entropy.

11.3 Sometimes Very Different Notation

Occasionally, we come across an author who uses all the possible notational
variants, and sometimes even invents new ones. An example is this equation
in Friston’s 2013 paper, “Life as We Know It” [1].

In this Eqn. 2.7 by Friston, we see that in the last line, he is using F to
refer to the free energy of the system. (He is using it as a function of three
variables, s, a, and λ, which are not important in this discussion.)

Friston then uses G (which he refers to as “Gibbs free energy,” which - as
we’ve discussed - is not a necessary distinction) for the enthalpy term, and
then uses H (the information-theory notation) for entropy.

The only way to deal with the notational conundrums presented by authors
such as this is diligent comparison of the actual equation specifics with their
known references. For example, we read that Friston identifies his last term
as the “entropy of the variational density.” We can verify this when we look
at how that equation is actually expresed, later in his works.
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Figure 11.2: Equation taken from Karl Friston’s 2013 paper, “Life as We
Know It.”

11.4 Enthalpy as a Linear Combination of

Two Terms

We often see that the enthalpy term is expressed as the sum of two terms, as
shown in the following equation.

The enthalpy of a system:

H = E = ⟨ei⟩+ ⟨eij⟩.

The enthalpy of the system (which we previously identified as chemical
potential) is often given as the sum of two terms; one expressing the expected
energy associated with each individual unit, and the other expressing the
energy associated with pairwise interactions between the units.
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Reading the Enthalpy Term:

The enthalpy (which we previously considered as the
chemical potential) is the sum of the expected energy
per unit, ei, together with the pairwise interaction
between units, ei,j (Note that we are changing the

meaning of the subscript j here; it now refers to another
unit in the system, and not to a distinct microstate.
This is to make it easier to read the next example,
which quotes from one of John Hopfield’s papers.

This formulation draws from the well-known statistical mechanics model
known as the Ising equation. It is very common in energy-based neural
networks.

As an example, we see how it is used in the Hopfield neural network.
(The same thought-process applies to the Boltzmann machine, the restricted
Boltzmann machine, and all its derivatives and descendents.)

John Hopfield’s 1982 work presented a new idea in neural networks, using
an energy function to describe the state of the network.

We looked at this equation in a previous chapter. At that point, though, we
were just using this energy equation to help us understand what the structure
of the neural network had to be. We were constructing an isomorphism
between the structure as implicitly expressed in the equation, and the structure
that we would create and train with different patterns.

Now, our purpose in looking at this equation is different. We’re noting the
correlation between an expression that defines how a neural network works
and its motivating source in statistical mechanics.

We’ve already identified (in a previous chapter) that the two units, Vi and
Vj, correspond to nodes in a neural network. We previously identified that
these were defined to be bistate units; meaning that they could be in one of
two states, and we gave those two states the values of “0” or “1.”

Now, though, we’re paying attention to the other term in this equation;
Ti,j, which refers to the interaction energy between the two units Vi and Vj.

If we’re familiar with statistical mechanics, then as soon as we see this
equation, we know that we’re dealing with a free energy approach. We
further know that we’re focusing on the interaction energy (more properly,
the interaction enthalpy) of the system.
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Figure 11.3: Extract from John Hopfield’s 1982 paper on “emergent collective
computation.”
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Example 11.1.
Suppose that you were to read John Hopfield’s original paper, introducing
what we now call the Hopfield neural network [2]. Figure 11.3 gives an extract
from this paper. Reading this, we would note the equation

E = −1

2

∑
i ̸=j

∑
j

Ti,jViVj

Hopfield’s next equation gives us an expression for ∆E, which tells us how
the energy changes over time. He specifically says that ∆E is a “monotonically
decreasing function,” meaning that the energy of the system is always either
decreasing or holding steady; it never increases. This tells us that we’re
dealing with a free energy minimization approach.

When he further says that “the case is isomorphic with an Ising model,”
he’s saying that we’re very similar in our method to one of the classic models
in statistical mechanics, where units can be either “on” or “off” (as with
many neural networks), and that there is a prescribed energy-of-activation
for the “on” units, and there is also an interaction energy between units.

Even if we knew nothing more about statistical mechanics and the Hopfield
neural network than what we’ve read in this so far, we’d now know that the
Hopfield neural network lives smack in the middle of the statistical mechanics
universe, and that it is trained using a (free) energy minimization method.
We’d also know that this neural network, even if not popular today (due to
memory constraints for storing patterns in this network), is part-and-parcel of
the world of neural networks and machine learning methods that use energy
minimization.

We’ve given the most minimal and superficial attention to the notion of free
energy. This concept has been foundational to modern neural networks (e.g.,
the Hopfield network), and continues with even broader scope and implications
today, as it plays a key role in multiple machine learning methods.
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