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Abstract

The big challenge, for many Al students and researchers, is that the
important papers in deep learning are written in the language
of statistical mechanics. In order for someone without a strong,
graduate-level physics background to read these papers, that person
needs to at least know the wocabulary of statistical mechanics, also
called statistical physics or even statistical thermodyamics.

This paper functions as a short phrase book for those who
are venturing into the realm of energy-based neural networks, which
are the networks on which all of deep learning architectures and
GANSs (generative adversarial networks) are based. It presents ten
common statistical mechanics terms, and orients the reader to
their meaning and to how these terms are used in neural networks
applications.

We translate statistical mechanics terms to common language.



1 Introduction: Why You Need the “Top Ten
Terms”

If you are an artificial intelligence (AI) student or practitioner, then you
probably already know that the Al is an integrative discipline. This means
that Al is more than multi-disciplinary. In order to understand the Al
fundamentals, you need to master enough of certain underlying disciplines
so that you can understand how the leading Al systems are constructed and
how they work.

The following Figure 1 identifies seven key papers in the evolution of
energy-based neural networks. These papers - and their corresponding neural
networks - all work with the same fundamental statistical mechanics equation.

This means - if you can master a very small set of statistical mechanics
concepts and equations, then you can understand these neural networks.

All These Energy-Based Neural Networks Use the
Same Fundamental Ising Equation (Stat Mech)

W. Little
(1974)
J. Hopfield

(1982,

Simplest
Models

Ackley, Hinton, & Sejnowski
Boltzmann Machine (1985)

GANs, CNNs, and Other
NN Also Use Same Eqn.

Smolensky
Restricted Boltzmann Machine (RBM)

(1986)
Hinton
Contrastive Divergence (2002)
Hinton & Salakhutdinov
Stacked RBMs (2006)
Most
Fomplex Salakhutdinov & Hinton
Deep Boltzmann Machines (2012,

1970 1980 1990 2000 2010 2020

Figure 1: Seven key papers in the evolution of energy-based neural networks.



2 Top Ten Terms that You Need to Know

The classic papers of energy-based neural networks, including the Hopfield
neural network, the (restricted) Boltzmann machine, and all deep learning
methods use the language of statistical mechanics, also known as statistical
physics or even statistical thermodynamics.

This is illustrated in the following paper (Salakhutdinov and Hinton
2012). In this paper, Salakhutdinov and Hinton presented a learning method
that enabled very powerful and effective learning in “deep” architectures.
These deep architectures used layers of (restricted) Boltzmann machines, and
enabled the current massive evolution in Al performance.

Salakhutdinov and Hinton describe the Boltzmann machine in terms of
the energy of the state of a given set of neurons or nodes. This notion of
the energy of a system draws on the language and concepts of statistical
mechanics.

An Efficient Learning Procedure for Deep
Boltzmann Machines

Ruslan Salakhutdinov

rsalakhu@utstat.toronto.edu

Department of Statistics, University of Toronto, Toronto,
Ontario M5S 3G3, Canada

Geoffrey Hinton

hinton@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto,
Omntario M58 3G3, Canada

hidden units h € {0, 1}¥ (see Figure 1, left panel) that learn to model higher-
order correlations between the visible units. The energy of the state (v, h} is
defined as

s ; k=
E(v.h:8)=-v' Wh . Lv - ;h Th, (2.1)

Figure 2: Statistical mechanics terms, such as energy or partition function,
are prevalent in the deep learning literature. An example is this paper by
Salakhutdinov and Hinton (2012).

If we can learn just ten terms from statistical mechanics, we’ll be able to
read the important papers in neural networks and deep learning.
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3 Term 1: Thermodynamsics

Thermodynamics s the science behind heat engines. For example,
when we say that an engine has a certain efficiency, the notions behind having
“efficiency” in an internal combustion engine all come from thermodynamics.

In a somewhat larger scale, thermodynamics forms the theoretical basis
behind all power-generation systems that rely on heat production, such as
any power production plant that burns fossil fuels.

The Encyclopedia Brittanica gives us a useful definition:
“Thermodynamics is the study of the relations between heat,

work, temperature, and energy. The laws of thermodynam-
ics describe how the energy in a system changes and whether
the system can perform useful work on its surroundings.”

(https://www.britannica.com/science/thermodynamics, accessed Feb.
9, 2022.)

Figure 3: A power plant measures its efficiency using the laws of thermody-
namics.

Thermodynamics is a macroscopic concept. In contrast, statistical
mechanics (for our purposes, the same as statistical physics/ thermodynam-
ics), works at a very, VERY microscopic scale.

The true beauty of this is that the very microscopic notions advanced in
statistical mechanics (statistical physics/thermodynamics) work out, when
the equations are applied to large-scale systems, to yield ezactly the same
results as the macroscopic notions from thermodynamics.
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4 Term 2: Free Energy

There’s nothing “free” about free energy. Instead, the notion of free energy
refers to the amount of energy that is available to do work - such as drive a
piston in an engine.

The free energy notion is common to both regular (macroscopic) thermo-
dynamics and to its microscopic corollary; statistical mechanics (or statistical
physics/thermodynamics).

If you read the literature, you might come across terms such as “Gibbs
free energy” or “Helmholtz free energy.” The distinction between these two
is important in macroscopic thermodynamics, and also for some realms of
statistical mechanics. Each term refers to a relationship between free energy
and changes in the pressure, volume, or temperature of a system - typically
considered macroscopic variables.

For our purposes, those distinctions don’t matter, because we’re ultimately
going to use a simple form of a statistical mechanics-based free energy equation
as a framework, or shell, into which we can insert neural network concepts.
This framework takes the notion of free energy into a new direction - away
from pure physics (or physical chemistry) and into a new discipline altogether.

Figure 4: “Free energy” - is not really “free;” it is fundamental in both
macroscopic thermodynamics and microscopic statistical thermodynamics.

The free energy function can be expressed in two different
ways. They are equivalent, but they look very different.



One way is that the free energy is the difference between two terms;
enthalpy and entropy. (We'll address these in subsequent sections.) The other
is as a function of the partition function.

The first way of expressing free energy is macroscopic, and is used in
classic thermodynamics. The second way is microscopic, or based on statistical
mechanics.

The formulation of free energy as a function of enthalpy and entropy is
shown in the following figure, taken from a Themesis YouTube on statistical
mechanics and neural networks (Maren 2021).

Free Energy Is a Linear Combination of Two Terms

F - H S * Fis the free energy
- = * His the enthalpy
* Sis the entropy

All terms have been divided-through by constants (with units of energy),
yielding a reduced equation — one where there are no units of energy

Easier when we don’t have to think about temperature, etc.

Figure 5: Free energy can be expressed as the difference between enthalpy and
entropy. This difference is the amount of energy that is “free,” or available to
do work - such as move a piston in an internal combustion engine.



5 Term 3: Statistical Mechanics

For our purposes, statistical physics, statistical mechanics, and statistical
thermodynamics all mean the same thing.

Statistical mechanics, invented by Ludwig Boltzmann, considers a system
in which the only things present are small particles, and we pretend that
these particles have no mass and no size, e.g., they are “point particles.”

Each particle DOES, however, reside in a specific energy state. The
properties of the system as a whole are dependent on how many
particles are in each different energy state.

Statistical Mechanics:
A System of Particles, Each in a Specific Energy State

/ O f \ O “On” Unit (in active state)

O “Off” Unit (in inactive state)

O Closed System of Interacting
O Particles; Particles Do Not
\ @) / Have Mass or Volume; They

DO Have an “Energy” State

Figure 6: Statistical mechanics is based on the behaviors of a large number
of interacting particles, each of which is in a distinct energy state.

Figure 6 illustrates a very simplified statistical mechanics system. The
“particles” shown are blown up in size; in statisical mechanics thinking, they
actually take up no volume at all. The system shown has particles in only
two energy states, i.e., it is a bistate system.

Now, we think about how energy-based neural networks work within a
statistical mechanics framework. The important thing is that in (almost
all) energy-based neural networks, the neural network nodes are also
bistate units. This means that we can readily apply the statistical
mechanics ideas and methods to energy-based neural networks.



6 Term 4: Enthalpy

Enthalpy is an energy concept. In statistical mechanics, there are (in a
simplified sense) two kinds of enthalpy (energy):

e Activation enthalpy, which is the enthalpy (energy) associated with
each individual unit in the system; this is directly related to the energy
state in which each unit is residing, and

e Interaction enthalpy, which is the energy associated with the in-
teraction between any two particles in the system.

Both the notions of activation enthalpy and interaction enthalpy are used
in energy-based neural networks. The authors of energy-based neural networks
papers (e.g., (Hinton and Salakhutdinov 2006)), refer to the combination of
these terms as the energy of the system, as illustrated in Figure 7.

The Energy Term in an Energy-Based Neural Network:
Uses Both Activation and Interaction Enthalpy

Activation enthalpy: proportional to
the number of active units — terms

Reducing the Dimensionality of

Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

“hidden™ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)

given by

involving v; and h; the scaling terms
(biases) are the b;and b,

Interaction enthalpy: proportional to
the number of pairwise multiplications

of active units — v; times h;; the scaling
E(v,h) = - Z by, — Z bh, terms are the w;;.

1€ pexels J€ features
= E vihwy
i)

The “visible” nodes are the v;
the “hidden” nodes are the h;.

Figure 7: Statistical mechanics uses the notion of enthalpy (energy), which
includes both activation energy and interaction energy. These same
two types of energy are used in all energy-based neural networks.

The equation used by Geoffrey Hinton and Ruslan Salakhutdinov, ex-
tracted in the above Figure 7, is consistent across all uses of Boltzmann
machines. Boltzmann machines are essential for deep learning.
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7 Term 5: Entropy

If you're going to learn more about any of the concepts presented here, your
best investment would be to focus on entropy.

The reason is that the notion of entropy, completely apart from sta-
tistical mechanics, has taken on a life of its own and become the basis for
information theory. From there, it has also become the basis for many
practices within the Al and ML community; we won’t take the time here to
identify all of them.

That said, not many people coming into the Al arena have a good “gut-feel”
for what entropy really is.

Figure 8: Entropy - it’s more than just “disorder” or “randomness.”

Many scientists describe entropy as a measure of the disorder or random-
ness in a system.

It may be more useful to think about entropy as a measure of the dis-
tribution of units in a system among all possible (energy) states.

These two statements are very close; they're really saying the same thing
- just from slightly different perspectives.



You may have seen the basic entropy equation in any one of many
different disciplines - from statistical mechanics to information theory.
This equation is given as

The Entropy Equation:

The j in this case is the number of allowed energy states, and p; is the
probability of units being in that state; it is really the total fraction of units
in that state.

When we have a bistate system, that is, there are only two allowed energy
levels, then we have p; + ps = 1. We can let x = p;, and then 1 — x = p,.

This gives us

The Entropy Equation:

S=—[zin(z)+ (1 —2)in(l—2z)]. (2)

A few minutes of playing around with a calculator or the simplest program
will easily reveal that the entropy is at a maximum when z; = zo = 0.5,
meaning that the entropy is at a maximum when we have distributed the
available units as broadly as possible among the (two) available states.

In fact, if we graph the entropy as a function of x, we’ll see that the
entropy forms a bowl-shaped (symmetrical) curve, with the bottom of the
bowl facing up, and the maximal entropy value is when x = 0.5.

The free energy, as we saw in Figure 5, is the enthalpy minus the entropy.
Thus, if the enthalpy were zero, then the free energy would simply be that
“entropy bowl,” turned upside down - so that it shows up as a regular (concave)
bowl.

In nature, systems tend towards equilibrium. That is, they tend towards
a free energy minimum.
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If there were no competing factors, that is, if the enthalpy were zero,
then the free energy minimum of a system would always be that “bottom of
the bowl” point. We would live in a universe where everything tends to be
maximally distributed among all possible states.

The introduction of the enthalpy term, though, shifts the location of the
free energy minimum away from the center point of the entropy bowl. It
makes other real-world configurations possible.
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8 Term 6: Equilibrium

There are really only a few powerful force-combinations that hold the universe
together. Interestingly - it’s not the singular forces that are important; it’s
how two of them - working together - provide the “glue” that makes the
universe work as it should.

Take gravity, for example. We all know about the “Law of Gravity.”
Babies spend hours experimenting with gravity, dropping their toys on the
floor. Toys always fall down; they never fall up.

Yet, the important thing is not just gravity. It is gravity working together
with one of Newton’s “Laws of Motion” - the one that says, “an object in
motion remains in motion at constant speed and in a straight line ...”

If gravity were the only important thing, we would expect that the moon
would fall into the earth, and the earth would fall into the sun. But, they
don’t.

Figure 9: The moon stays in orbit around the earth because its orbit balances
the Law of Gravity and the First Law of Motion. Photo courtesy Ken G.
Kosada, Lethal Lens Photography on Instagram. (See Acknowledgements at
the end of this paper.)

Instead, the moon travels in an orbit around the earth, and the earth
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travels in an orbit around the sun. When a spacecraft or rocket hits a certain
point at which it can go into orbit, we say that it has “achieved orbital
velocity.” That means that, for that particular distance from the earth, the
rocket has achieved enough velocity for it to stay in orbit (at that distance)
without falling back to earth.

What’s important is not just Law of Gravity, or the Law of Motion. It’s
how the two work together to give us stable systems.

The “Principle of Equilibrium” is similar. It is the combination - the
balancing - of two different things.

Figure 10: Equilibrium - the balance between entropy and enthalpy - when
the free energy of the system is at a minimum.

In nature, this “Principle of Equilibrium” says that a system will tend
towards a free energy minimum. “Free energy” is an important notion -
perhaps the most important notion in statistical mechanics (or statistical
physics/thermodynamics), and in regular thermodynamics as well.

We introduced free energy previously in Section 4, and noted that it
could be expressed two different ways; it’s a dimorphic equation. The version
that we’ll use here expresses the free energy very simply; free energy is the
difference between two terms - enthalpy and entropy. (Recall Figure 4.)
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So while we might think of equilibrium as being a balance between two or
more things - such as a “work/life balance,” for our purposes, the best way to
think about equilibrium is that it is finding the minimum in the free energy.

This notion of “finding the miniimum” works so well that it not only
underlies much of statistical mechanics - and hence, models a lot of nature -
but it also works in creating a model for neural network training.

So here we have it. This is the essence of all energy-based neural
networks; the Hopfield (Little-Hopfield) neural network, the Boltzmann
machine (whether simple or restricted), and all forms of “deep” architectures.

All of these networks work as well as they do because they each are trained
to find a free energy minimum. The free energy minimum that is used by
these neural networks is NOT the same in as is found in models describing
nature; there are no “particles” that have mass (or not), etc.:

1. Instead of “particles in a volume,” we have nodes in a neural network,

2. Instead of having some sort of interactions between these particles, we
have connection weights between the nodes, and

3. Instead of entropy, we have building a training and testing data set.

(We'll discuss these points in the Bonus Chapters included at the end of
the Top Ten Terms short course.

With all of these changes - in applying statistical mechanics to neural
networks - we’d think it is surprising (perhaps even shocking) that the free
energy notion works as well as it does in neural networks. In fact, for neural
networks, “free energy” is almost a poetic metaphor, and less a model of an
actual, real, observable and measurable physical system.

However, as a poetic metaphor, the free energy equation functions re-
markably well. That’s why these neural networks (Hopfield, Boltzmann, and
“deep”) function as well as they do.

It is just because these neural networks are indeed so effective that we
often want to learn about them by reading the original literature - and also,
the emerging new work that will keep us up-to-date in our field.

The problem that most of us encounter is that the authors of these very
important papers bring in a lot of concepts and terms, and they don’t often
explain the context. This means that we are often left feeling frustrated, and
at a loss, when it comes to reading (or deciphering) these papers.

14



What may help us, when we read these important works, is to realize that
the authors of these papers are often physicists. The notion of free energy is
as real to them as the ocean is to a fish swimming among the coral reefs.

If a fish was communicating with another fish, it would mention specific
things about the coral reef. It would NOT have to remind the other fish, “Oh,
by the way, we're swimming in an ocean.” That part would be assumed as
common knowledge.

Thus, when we read the important, foundational neural net-
works papers, the authors don’t mention free energy. They might,
in fact, discuss something that is very much about one aspect of free energy
- for example, entropy (which we discussed in the previous Section 7). But
they will assume that this concept is so well understood by their reader that
they don’t even mention it as a common reference frame.

Figure 11: When a fish communicates with another fish, that fish does
not need to reference the ocean - it is already a common reference frame.
Similarly, when physicists talk or write about energy-based neural networks,
they will often assume that we (the readers) understand statistical mechanics
as a common reference frame. Photo courtesy Ken G. Kosada, Lethal Lens
Photography on Instagram. (See Acknowledgements at the end of this paper.)
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Instead, these (physicist) authors will write about things that are impor-
tant as they attempt to implement the notion of free energy into their neural
network. Instead of saying, “Let’s talk about entropy,” they’ll jump right
into something that is very relevant to implementing entropy in the neural
network training - such as Gibbs sampling or Markov chains.

They will assume that their reader understands the context in which these
new topics are being mentioned. They do this because, in their minds, they
are writing for other physicists.

It is up to us, who are entering the field without this kind of background,
to decode their reference frame and figure out the context in which they are
bringing in certain topics.

That is why we need this phrasebook covering the Top Ten Terms in
statistical mechanics. Like a decoder ring, it helps us decode the messages
that these researchers were sending to their colleagues. With key phrases
under our belt, we can also decode their messages.

16



9 Term 7: Maicrostates

The notion of microstates is the most foundational to statistical mechanics.
It is also the most abstract.

The insight into microstates is due to Ludwig Boltzmann, who invented
the field of statistical mechanics. His ideas were not accepted right away -
despite his ability to show how when we looked at the behavior of microscopic
systems (those described by statistical mechanics) at a large enough scale, we
came to exactly the results of the classical thermodynamics. (This was an
amazing intellectual tour de force at its time, and still ranks as one of the
most significant discoveries of all time.)

The notion of microstates is that we can describe a system in terms of how
many units (or particles with zero volume and zero mass) are at distinctly
different energy levels. Figure 12 shows a system with ten particles or units,
and three energy levels. This particular figure illustrates the case where there
is one unit (#10) at the highest energy level (e; = 2), two units at the middle
energy level (e; = 1), and the remaining seven units are at the lowest energy
level (e; = 0). Here, the subscript j indices the three different energy levels.
The “energies” are assigned arbitrary values of 0, 1, and 2.

Microstate lllustration:
A System with Ten Units and Three Energy Levels

7

3 @) )
o ®®
' 0000000 o

Figure 12: Microstates - the ways in which a system with a specific energy
distribution can be configured.

11

The key notion about microstates is that we can count the number of
microstates associated with a particular distribution of units into energy
states. For example, in the energy state-distribution shown in Figure 12, we
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can create a total of ten different ways of putting a unit into the top-most
energy state. (This is because we have ten different units, and so there are
ten ways to do this.) Then, we have 9 % 8 distinct ways of putting two of the
remaining units into the middle-most energy state. OF course, we then have
to divide by two - because it doesn’t matter where we put each of those units;
we can interchange them and still have the same two units at that energy
level.

In short, it doesn’t matter what order we arrange the units in at a
particular energy level. It just matters which units are where.

Imagine going to a party at a house where there are three stories, and
ten guests. If only one person is allowed onto the top floor at a time, and
only two persons are allowed onto the middle floor, then we have a similar
situation. The host doesn’t care where the guests are on a particular floor; for
example, guests #8 and #9 can move about and change places on the middle
floor. As far as the host is concerned, that’s still just one of the potentially
allowable patterns for guest-configurations. However, if guest #1 changes
places with guest #8 on the second floor, that is a new configuration. Or, if
guest #8 changes places with guest #10, so that guest #8 is now on the top
floor, and guest #10 is on the middle floor, that is also a new configuration.

Three Key Concepts in Statistical Mechanics

[Microstates

The Partition
Function

Free Energy

Figure 13: Three key concepts in statistical mechanics will get you established
well enough to read - and understand - the important papers in neural
networks and deep learning.
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When we allow progressively more units at the higher energy levels (or
more guests are allowed to the upper floors at one time), the total number of
possible arrangements increases.

If we did these calculations, we’d find that we get the maximal number of
possible arrangements when we allow an equal distribution of units-per-level.
(In our case, we’d have three units on one level, three on another, and four
on the third - it wouldn’t matter how we allotted those limits.)

However we did this, we’d get the maximal number of arrangements when
we allow the units to spread out, as much as possible, between all energy
levels.

This “spreading out between levels” leads us directly to the notion of
entropy, which we discussed previously.

To be more precise, the notion of microstates leads us to something called
the partition function, which leads directly to entropy. This is shown in
Figure 13.

The bottom line is that the notion of microstates is foundational to
statistical mechanics. However, we almost never see this term mentioned in
the AI or machine learning (ML) or deep learning or variational methods
literature. This is because when we start using statistical mechanics as a
model in AT/ML, we use it in a metaphorical sense. In energy-based neural
networks, for example, we have nodes that can be “on” or “off,” and we adapt
the connection weights between certain kinds of nodes. However, we don’t
typically do a microstates-type calculation using those nodes.

Instead, when we have to think about the entropy for an energy-based
neural network, we think about creating a well-balanced data set, instead of
putting nodes into different energy states. It leads to the same place (when
done right); it’s just very different ways of conceptualizing the notion of
“arranging nodes in the allowable energy states.”

We DO occasionally see the term “partition function” in the literature.
Therefore, we discuss that in the next section.
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10 Term 8: Partition Function

The partition function crops up in many books and papers on deep learning.

Deep Learning

An MIT Press book
L

Chapter 18

Confronting the Partition
Function

In section 16.2.2 we saw that many probabilistic models (commonly known as undi-
rected graphical models) are defined by an unnormalized probability distribution
p(x:8). We must normalize p by dividing by a partition function Z(8) to obtain a
valid probability distribution:

(x: 8) —
P= 700

p(x:8). (18.1)

The partition function is an integral (for continous variables) or sum (for discrete
variables) over the unnormalized probahility of all states:

Figure 14: Extract from Deep Learning by lan Goodfellow, Yoshua Bengio,
and Aaron Courville. Published in 2016 by The MIT Press, Cambridge, MA.

The partition function, Z, for the German word zusammanfigen (literally
“put together’), is a summation over all the possible microstates, j, that a
system can find itself in, and is given as

The Partition Function:
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The very weird, strange, and sort-of-sneaky thing about Eqn. 3 is the
summation index j is not over the total number of particles in the system,
and it is not over the total number of energy states.

Instead, the summation is over the total number of microstates.

This was the radical, explosively-innovative notion that Ludwig Boltzmann
conceptualized and published in a series of articles in the 1870’s.

Boltzmann’s ideas were ridiculed by other physicists. His insights were
not validated until shortly before the 1900’s, when new discoveries in atomic
physics gave support to his work.

Even today, statistical mechanics is still regarded as one of the most
intellectually challenging fields. If we can “wrap our heads” around the
concepts of microstates and the partition function, we have made substantial
gains - and ascended into very lofty elevations of abstract conceptualization!

However, to understand the AI/ML literature, we typically do not need to
understand the notions of microstates and the partition function in depth. (It
does help, though, to be familiar with how researchers formulate the entropy
equation.)

What is most important is to remember that, in ATl and ML, statistical
physics is used as a model. It’s not to be taken literally. Instead, it’s a
conceptual framework that - when applied to energy-based neural networks,
or variational inference, or other tasks - gives us very good results.

Thus, statistical mechanics validates itself (for our purposes) by being
very useful. It is a pragmatically useful tool.

For what we need to do, the terms that we’ve covered so far get us very
far in terms of using statistical mechanics as a model.

Most of us, even if we're studying the most subtle and arcane papers in Al
and ML, do not need a full graduate-level course in statistical mechanics in
order to read (and understand) the AI/ML papers. We just need to identify
how the AI/ML work is positioned within the statistical mechanics reference
frame.

In the two remaining sections, we take on just two more terms. Both
of them have to do with how statistical mechanics is specifically used in
application to AI/ML. These two terms are:

e The Ising equation, which is how we write the free energy equation
(enthalpy minus entropy) in specific terms, and

e Interaction enthalpy, which is the energy associated with the in-
teraction between any two particles in the system.
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11 Term 9: Ising Equation

The Ising equation, or Ising model, is one of the most common free energy
equations in statistical mechanics. It has two major parts; one dealing with
the enthalpy term, and the other dealing with entropy. We've discussed each
of these two terms, in Sections 6 and 7 respectively.

The important thing about the Ising equation is that is is the simplest
possible useful free energy model from statistical mechanics. It’s also the
basis for all energy-based neural networks; this includes the Little-Hopfield
neural network, the Boltzmann machine (both original and restricted), and
all “deep” architectures, as well as GANs (generative adversarial networks).

In short, the Ising equation is a profoundly useful tool - both in statistical
mechanics and in energy-based neural networks.

The following Figure 15 is taken from a Themesis YouTube (Maren 2021).

The Ising Model
Energies Associated with Particles and Interactions

/OQ\

Ising
Model

O “On” Unit (in active state)

O O O “Off” Unit (in inactive state)
& O
o 4

Figure 15: The Ising equation is a statistical mechanics equation that expresses
the free energy of a system in terms of the enthalpy (energies) of individual
particles, together with the overall system entropy.

Three key points help us understand why the Ising equation is so useful:

1. Baistate system - there are only two energy states allowed for the
units in the Ising model, so we can think of these units as being either
éﬁon” or “OH.’,
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2. Interaction enthalpy can be eastly modeled - there are several
different ways in which the interaction enthalpy can be expressed in the
Ising equation; we’ll discuss these more in the next section as our final
“term” in this study of Top Ten Terms.

3. Powerful model - from the statistical mechanics perspective, even
though the Ising equation is simple, it can be used to model a great deal
of naturally-occuring phenomena. From the neural networks perspective,
the Ising equation has made possible an entire class of neural networks,
and is the foundation for all manner of “deep” architectures.

When we limit the system being modeled by the Ising equation to having
just two allowable energy states, then the mathematics is much easier.

This is why, in almost all energy-based neural networks (as well as a great
deal of the statistical mechanics literature), we see that the Ising model is
applied to a system where there are only two allowable energy states. These
translate to specific nodes (or neurons) being either “on” or “off.”

We will continue this discussion, making a stronger connection on how the
Ising model is used in an energy-based neural network, in the Bonus Chapters
that are provided in the last week of the Top Ten Terms short course.
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12 Term 10: Energy Function: The Interac-
tion Energy
In classic statistical mechanics, the interactions between nodes are just a

single scalar value. This is shown in the following Figure 16 (taken from a
Themesis YouTube presented by A.J. Maren (Maren 2021)).

Interaction Enthalpy in the Ising Model

/OQ\

Ising
Model
The mean-field method: a well-

known method for defining
@ : .
interaction enthalpy
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Figure 16: The interaction energy (enthalpy) in a typical Ising equation
usually represents pairwise interactions, and will (in many Ising formulations)
be a function of how many other particles are within a certain radius of the
particle for which you're computing the interaction enthalpy.

The breakthrough notion for neural networks - both in the backpropagation
method for Multilayer Perceptrons (MLPs) and for Boltzmann machines (and
all forms of deep learning architectures) is that the neural network “learns’
an individual and specific interaction energy between each different pairwise
combination of “visible” and “hidden” nodes.

When a MLP neural network uses backpropagation for learning, it mini-
mizes a squared error function across all the output nodes. When an energy-
based neural network (e.g., a Boltzmann machine) does learning, it minimizes
an energy function.

In a simple Boltzmann machine, there are connections between all nodes;
visible-to-hidden, visible-to-visible, and hidden-to-hidden.

)
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In a restricted Boltzmann machine, the connections are restricted; they
are between visible-to-hidden nodes only. (And have the same values going
the other way; hidden-to-visible.)

The energy function used in Boltzmann machines is very sim-
tlar to the Ising energy equation in statistical mechanics. The big
difference is that, in statistical mechanics, there is a single value for the inter-
action energy between nodes (or “units”) in the system. In an energy-based
neural network (e.g., a Boltzmann machine), each connection between two
nodes - that is, the interaction energy for each node-to-node connection - is
determined uniquely for that network.

We will go into the relation between the Ising equation and the Boltzmann
machine (and all energy-based neural networks) in the accompanying Bonus
Chapters.

For now, we complete our study of statistical mechanics terms by looking
at how the interaction energy is formulated for a simple Ising equation.

If we refer to Figure 16, we see that there is a big, red circle drawn around
an “on” node (shown in the near-center of the figure). The total interaction
enthalpy associated with this “on” node depends on the fraction of other
“on” nodes within a radius around this central “on” node. (This is a very
simplified explanation; there are other, much more complex and elaborate
ways to compute interaction enthalpy.)

Still referring to Figure 16, we get the total interaction enthalpy for a
given active node (a scalar term) by multiplying the interaction enthalpy-
per-active-node by the total fraction of active nodes. (This scales the overall
fraction of active nodes to those that can be found within the specified radius
around that individual active node.) If we use x to refer to the fraction of
nodes that are active, this gives us the interaction enthalpy per active node
as a function linear in .

Then, to get the total interaction enthalpy for the system, we multiply
that value by the fraction of nodes that are active across the system. This
gives us a total interaction enthalpy that is proportional to z2.

When we get to the Bonus Chapters, we’ll learn how the energy of the
node-to-node connections is similar to that of the interaction energy in the
Ising equation. The real difference is that in the Ising model, there is just one
value for a node-to-node interaction energy, and in a Boltzmann machine (or
any related neural network), the interaction energy is computed specifically
for each different connection.

Once we study this correspondence, we’ll realize that all energy-based
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neural networks share this fundamental reliance on the same Ising model.
This means that the Little-Hopfield neural network, the Boltzmann machine
(both simple and restricted), and then all forms of deep learning and GANs
are based on the same fundamental statistical mechanics metaphor.

After we've studied the Bonus Chapters, we will know enough to go to the
great classics of energy-based neural networks, such as the articles identified
in Figure 1, and understand them with much greater insight.
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13 Summary and Next Steps

In studying this short article, you've gained a useful and solid understanding
of the top ten terms used in statistical mechanics (also known as statistical
physics, and sometimes as statistical thermodynamics).

You are now in a position to apply what you’ve learned to understanding
the classic works in energy-based neural networks.

This next step will take you beyond a simple understanding of
the top ten terms.

Actually, there are three components to your next step:

1. First pass - identify what terms you now understand - take
a paper that you may have previously attempted to read, and read it
again - at least the portion where you were figuratively “blown out of the
water” earlier; this time, identify the terms that you now understand;
this means that (with sufficient attention) you can now work through
that paper,

2. Second pass - reading for clarity and understanding - go
through the same paper (more realistically; the specific section of
that paper), and this time, work through the details; at this point,
you’ll want to correlate the equations (which you now understand)
with the neural network structure and operation; in short, make the
important connections, and then

3. Extend your understanding across multiple works - there are
many important papers, and you’ll want to read more than one. Each
time, the equations will seem to be subtly different. The question
that you’ll want to answer is: “Is this the same neural network, or
is it just different enough so that you can confidently discern
whether or not they are the same - or if you need to understand a
different neural network.

You've just taken the first and most important step - you've accessed
this PDF by enrolling in the Themesis short course in the Top Ten Terms in
Statistical Mechanics.

Your next necessary task is to get to the end of the course sequence,
where you’ll have a link to a Bonus PDF'. These Bonus Chapters will get
you started on these three steps that we just identified.

This bonus material will give you an overview. It will get you started.

27



Then, follow through.

Look for your follow-on Themesis emails. Look for opportunities
to take the next short course in this sequnce. Identify a few more papers
that you'd like to have under your belt. (The papers identified in Figure 1
are some good starting points.)

You’re now in a different place in your mastery of neural networks funda-
mentals. You can phrase a different set of questions. You can have different
objectives in your next round of study. This puts you in a more powerful
position as you progress in mastery.

You are now more mentally prepared to investigate in greater depth, with
more penetrating and insightful questions.

As always, Themesis welcomes your input and feedback.

Please feel free to email us at themesis1@themesis.com

We look forward to hearing from you, and to connecting with you soon in
the bonus materials that you already can access, and in the next short course.

Very best wishes from all of us at Themesis, Inc.

Alianna J. Maren, Ph.D.
Founder and Chief Scientist
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